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Abstract. In healthcare domains, dealing with missing data is crucial
since absent observations compromise the reliability of decision support
models. k-nearest neighbours imputation has proven beneficial since it
takes advantage of the similarity between patients to replace missing
values. Nevertheless, its performance largely depends on the distance
function used to evaluate such similarity. In the literature, k-nearest
neighbours imputation frequently neglects the nature of data or per-
forms feature transformation, whereas in this work, we study the impact
of different heterogeneous distance functions on k-nearest neighbour im-
putation for biomedical datasets. Our results show that distance func-
tions considerably impact the performance results of classifiers learned
from the imputed data, especially when data is complex.
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1 Introduction

A common data quality problem in healthcare domains is the presence of Missing
Data, which consists of absent observations in patients’ medical records. Deal-
ing with missing data is of outstanding importance, since absent observations
may jeopardise algorithms’ predictions, compromising the reliability of patient-
oriented models for decision making. k-nearest neighbours (KNN) imputation is
a popular imputation technique in healthcare domains, since it takes advantage
of the similarity between patients to produce accurate estimates for imputa-
tion. Furthermore, it is a nonparametric method which does not require any
assumptions on the data [I3], has proven to preserve the data distribution [12]
and allows for a great interpretability and explainability, crucial in healthcare
domains [2].
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FCT Research Grant SFRH/BD/138749/2018.
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Nevertheless, KNN performance largely depends on the distance function
used to evaluate such similarity. For heterogeneous data, typical solutions include
feature transformation, although leading to lost of information (e.g., discretisa-
tion of continuous features) or increased dimensionality (e.g., one-hot encoding)
and the use of heterogeneous distance functions that handle different scales [15].
However, besides their heterogeneous nature and susceptibility to missing data,
biomedical data is also prone to other difficulty factors, such as data imbalance,
the presence of subconcepts in data (small disjuncts), class overlap, and noisy
data [11], which make them especially complex domains where choosing suitable
distance functions becomes a more strenuous and critical task.

In related work, KNN imputation frequently neglects the nature of data or
performs feature transformation [I3]. Considering KNN classification, either the
studies consider only complete datasets (or derisory amounts of missing values)
or the nature of data is ignored [5]. This work studies the impact of different
heterogeneous distance functions on KNN imputation, evaluating their effect on
the classification performance of biomedical datasets with different character-
istics. The purpose of this research is two-fold: 1) Determining if distance
functions impact KNN imputation of biomedical datasets and whether
the type of features affected by missing data influences the results and
2) Determining whether obtained results are related to the charac-
teristics of biomedical datasets, i.e., if there are scenarios where the choice
of distance function considerably influences the obtained results. To that end,
a benchmark of biomedical datasets with different characteristics was collected
and missing data was generated following 4 different variants and percentages (5
to 30%). Then, data imputation is performed using 7 different distance functions
and imputation results are evaluated through the analysis of a classifier learned
from the imputed data.

To the authors knowledge, no study has yet investigated the impact of dif-
ferent distance functions on the imputation of biomedical data with different
characteristics and its effect on classification performance, which constitutes the
main contribution of this work. Furthermore, we explore recent distance mea-
sures never before studied for imputation purposes, such as SIMDIST and MDE
(Section , extend MDE to handle categorical data, study redefinitions of pop-
ular distance functions (HEOM and HVDM), often overlooked in related work,
and propose yet another redefinition of HVDM, which constitute additional con-
tributions.

2 Heterogeneous Distance Functions for Missing Data

All distance functions measure the distance between two patterns x4, and xp
through a sum of their individual distances in each j-th feature, d;(z4;, zg;),

as D(xa,xp) = \/zgzl d;j(zaj,xBj)?%; yet they differ on the computation of

individual d; distances and treatment of missing values (p represents the total
number of features and x 4;, xp; are two values of feature j). The mathematical
formulation of all distance functions may be found in the Appendix.
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HEOM and HVDM: The definition of d;(za;,xp,) for Heterogeneous
Euclidean-Overlap Metric (HEOM) and Heterogeneous Value Difference Met-
ric (HVDM) depends on the type of feature j (equations [I| and [2) [15]. For
categorical features, HEOM defines d; as an overlap metric, dp (equation
whereas HVDM uses dyam (equation . For continuous features, HEOM uses
the normalised euclidean distance dy (equation , whereas HVDM considers
dgirs (equation @ However, do, dgiff, dy and dygm, are only computed if both
z4; and xp; are observed; otherwise, d;(z4;,2p;) = 1.

HEOM-R, HVDM-R and HVDM-S: HEOM-R and HVDM-R [6] con-
sider missing values as “special values”: if both x4; and xp; are missing, then
dj(zaj,zpj) = 0 (equation . In addition, we propose another redefinition of
HVDM: missing values are considered an “special” category and dyq, is applied
when only z4; or xp; are missing and j is categorical, referred to as HVDM-S
(equation [9)).

SIMDIST: SIMDIST defines a similarity measure S (equation , where
s4pj is an intermediate similarity between patterns according to j, s; represents
the mean similarity among all patterns according to j and z is a normalisation
function: z(a) = ;47 [3]. For categorical features, s ap; is defined by equation
whereas for continuous features, s4p; is determined by equation SaBj = 3
when x4; or xp; are missing which is the equivalent of replacing the missing
similarity by the mean similarities of all patterns according to j (equation. The
individual similarities S4p; are then transformed to distances Dap; = 1—SapB;
and aggregated to produce D(x4,Xp).

MDE: When both values are observed, Mean Euclidean Distance (M Dg)
[ is defined as the euclidean distance (equation [12). When either 24; or zg;
are missing, M Dg is approximated as the mean distance of each value of x;
to the observed value (equation [14] ) and when both values are missing, M Dg
is approximated as the mean distance between all values of z; (equation .
To allow a proper weighting of continuous features with different ranges, a min-
is computed. When first proposed, M Dg considered only continuous features.
Therefore, starting from the overlap distance, do (equation we extended M Dg
for categorical features, M Do: when both values are known, M Dy is the same as
do; when one value is missing, M D¢ is computed as the mean distance between
all elements in x; and the observed value (equation ; when both values are
missing M Do is determined as the mean distance between all elements in z;
(equation . After the individual distances are computed, their aggregation is
performed as for the remaining distances.

max normalisation, z; = is applied before the euclidean distance

3 Experimental Setup

We started by collecting 31 complete and binary-classification datasets from
open-source repositories (UCI Machine Learning, KEEL, KAGGLE, OPENML),
comprising different biomedical contexts, sample sizes, number of features, type
of features (continuous and categorical), imbalance ratios (IR) and complexity
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characteristics. Each dataset is divided into 5 folds following a stratified crossvali-
dation (SCV) approach (as some datasets have a lower number of minority exam-
ples, using 10 folds would result in test sets with a very small amount of minority
examples or the need to repeat minority examples across folds). Then, missing
data is introduced in the training set, following 4 different variants, herein re-
ferred to as Weighted-Plain (PLAIN), Weighted-All (WA), Weighted-Continuous
(WA-CONT) and Weighted-Categorical (WA-CAT). The same missing rate was
inserted in both classes according to the IR of each dataset (hence the “weighted”
designation), to guarantee that missing data is affecting both classes proportion-
ally to their distribution. However, the features affected by missing data differ
for each type. PLAIN generation does not control for the number or type of
features where missing values are placed. In this case, missing data is generated
over the entire dataset with no restrictions, simulating a scenario more likely
to be found in real-world domains. Nevertheless, WA approach generates the
same percentage of missing values for each feature (all features are equally af-
fected by missing data), whereas WA-CONT and WA-CAT approaches generate
the same amount of missing data for all continuous and categorical features, re-
spectively. The goal of comparing different generations variants of missing data
is to determine if the type of features (continuous or categorical) affected by
missing data influenced the choice of a proper distance function for imputation.
Also, missing data is generated at 4 different rates (5, 10, 20 and 30%) under a
Missing Completely At Random (MCAR) mechanism. MCAR mechanism was
considered for a rigorous control of the missing generation. As missing data is
synthetically generated in a multivariate scheme (several features, if not all, are
affected by missing data), for each variant and rate, and the considered datasets
comprise heterogeneous features, other mechanisms could be compromised due
to existing limitations of generation approaches for categorical data [10]. After
the injection of missing data, the datasets with missing values are either directly
classified with Classification and Regression Trees (CART) model (BASELINE
approach) or first imputed with KNN (k = 1,3,5,7) and then classified with
CART. CART model is also a non-parametric classifier and relatively fast to
construct and to provide classification results. Furthermore, it handles missing
data directly through the use of surrogate splits (without discarding any patterns
from the dataset or assuming a particular missing mechanism) thus allowing a
comparison between learning a model with missing data or complete data (via
imputation) [T4]. Regarding the chosen distance functions, we started by con-
sidering distance functions that handled the three components of the problem
(continuous, categorical and missing data) or required minimal adjustments, as
described in Section [2] On that note, MDE, although lacking the treatment of
categorical data, was extended and included given its similarity with HEOM
and SIMDIST, yet using the data distribution to handle missing data (as is
performed for continuous data). Similarly, we propose HVDM-S as a modifica-
tion of HVDM, only altering the treatment of missing data and maintaining
the remaining aspects regarding continuous and categorical data [9]. Finally,
classification performance is evaluated using Accuracy, Sensitivity, Specificity,
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Fig. 1: Stratified crossvalidation and missing data generation: missing data is
injected after the splitting of the data into training and test sets, for each fold.
The same splits are used for all methods (both for training and testing stages).
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Precision, F-measure, G-mean and AUC (although for simplicity we present the
most relevant metrics for imbalanced domains: Sensitivity, F-measure and G-
mean) [SITT]. For each dataset, 10 versions of the crossvalidation procedure were
performed, resulting in a 10 x 5 SCV approach (Fig. . Overall, 31 datasets x
10 SCV Versions x 4 missing variants X 4 missing rates x 7 distance functions
X 4 k values (imputed datasets) + 31 datasets x 10 SCV Versions x 4 missing
variants x 4 missing rates (for BASELINE approach) sums up to an equivalent
of 143,840 datasets evaluated.

4 Results and Discussion

Tables [I] and [2] report on the average sensitivity ranks obtained for each ap-
proach, considering training sets with missing values (BASELINE) and training
sets imputed with each of the 7 considered distances. Furthermore, results are
grouped by missing data variant (PLAIN, WA, WA-CAT and WA-CONT) and
missing rate (5% to 30%). Overall, for both k¥ = 1 and k = 3, HVDM-S is
globally the top performing approach, independently of the generation variant.
For £k = 1, where KNN imputation has a more local behaviour, HVDM-S is
consistently the best approach for most missing rates (> 5%) in all variants,
only surpassed by SIMDIST when missing data is generated exclusively on con-
tinuous features. This suggests that although HVDM-S handles efficiently both
continuous, categorical and missing values, the strategy used by SIMDIST to
handle continuous values might be superior. For k = 3, HVDM-S surpasses the
remaining approaches for higher missing rates (> 10%), with MDE showing
competitive results for WA datasets in lower rates (5 and 10%). Furthermore,
for k = 3, HVDM-S presents a lower average rank for higher missing rates than
for k = 1; whereas as the value of k increases further, ¥ = {5, 7}, KNN im-
putation shows a more global behaviour, and differences among the approaches
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Table 1: CART average sensitivity ranks per missing rate, and variant (k = 1).
MR B HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

5% 5.31 4.50 4.58 3.95 5.18 4.24 3.79 4.45
PLAIN 10% 5.52 4.35 5.31 5.03 4.63 3.48 3.73 3.95
Datasets 20% 4.32 4.66 5.06 4.77 5.37 3.32 4.10 4.39
30% 4.55 4.47 4.94 4.44 5.35 3.10 3.56 5.60
5% 3.55 4.98 4.89 4.63 4.61 4.65 3.55 5.15
WA 10% 5.24 4.81 4.87 4.42 5.06 3.16 4.18 4.26
Datasets 20% 5.10 5.05 4.87 4.34 4.21 3.63 3.77 5.03
30% 5.23 4.27 5.08 3.97 5.21 3.60 3.71 4.94
5% 5.57 4.93 4.12 3.91 3.86 4.10 5.03 4.47
WA-CAT 10% 5.02 4.59 5.00 4.64 5.21 3.12 3.64 4.79
Datasets 20% 4.91 4.38 5.14 4.00 4.78 3.60 4.83 4.36
30% 4.97 4.71 5.02 4.45 4.81 3.52 4.29 4.24
5% 5.31 4.26 4.63 4.08 4.39 4.39 5.03 3.92
WA-CONT 10% 4.92 4.79 4.73 4.56 4.37 4.37 4.24 4.02
Datasets 20% 5.31 4.18 4.71 5.10 4.08 4.08 4.19 4.35
30% 3.92 4.56 4.71 4.97 4.63 4.63 4.19 4.39

B: BASELINE; HEOM-R: HEOM-REDEF; HVDM-R: HVDM-REDEF; HVDM-S: HVDM-SPECIAL

Table 2: CART average sensitivity ranks per missing rate, and variant (k = 3).
MR B  HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

5% 5.76 4.56 4.52 4.26 4.61 3.76 3.74 4.79
PLAIN 10% 6.40 4.66 3.94 5.18 3.87 3.44 4.31 4.21
Datasets 20% 5.40 5.26 4.65 4.29 4.52 3.48 3.89 4.52
30% 6.39 5.02 4.02 4.24 5.00 2.95 3.56 4.82
5% 4.44 4.90 4.47 5.06 5.31 3.82 3.60 4.40
WA 10% 5.60 4.06 4.76 4.50 4.44 4.47 3.94 4.24
Datasets 20% 5.50 4.61 5.11 4.89 4.56 3.34 3.76 4.23
30% 6.21 5.16 3.84 4.15 4.21 3.53 4.32 4.58
5% 5.34 4.28 4.83 3.59 3.52 4.31 5.07 5.07
WA-CAT 10% 4.79 4.53 4.93 4.60 4.86 4.00 4.64 3.64
Datasets 20% 5.72 3.93 4.76 4.29 4.67 3.76 5.00 3.86
30% 4.86 3.98 4.66 5.50 5.12 3.34 4.45 4.09
5% 5.29 4.85 3.89 4.48 4.35 4.35 4.23 4.55
WA-CONT 10% 5.87 4.35 4.32 4.42 4.37 4.37 3.66 4.63
Datasets 20% 5.27 5.00 4.35 4.27 3.98 3.98 4.19 4.94
30% 4.98 4.66 4.37 4.82 4.16 4.16 4.29 4.55

B: BASELINE; HEOM-R: HEOM-REDEF; HVDM-R: HVDM-REDEF; HVDM-S: HVDM-SPECIAL

become less clear, although HVDM-S remains in the top performing approaches,
especially when missing data is generated across the entire dataset (PLAIN and
WA) approaches. This behaviour of k (differences between approaches becom-
ing more smoothed) is expected given that with a larger k-neighborhood, the
local properties of KNN which grant it its greatest advantage (taking advantage
of the similarity between patterns) become more and more lost. As the anal-
ysis of ranks does not provide information of the classification results directly,
we analyse also several important performance metrics for complex, imbalanced
data, such as Sensitivity, F-measure and G-mean, as shown in Table |3| As fol-
lows, HVDM-S is the top performing approach across all metrics and missing
rates, and its superiority becomes more evident for higher missing rates (20%
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Table 3: CART performance results (mean + standard deviation) on PLAIN
Datasets without imputation (BASELINE) and with KNN (k = 3) imputation
using several distances.

Distance MR Sens F-measure G-mean ‘ MR Sens F-measure G-mean

BASELINE 0.468 £ 0.331 0.472 4+ 0.326 0.536 £+ 0.300 0.460 £ 0.334 0.463 4+ 0.331 0.524 £ 0.306
HEOM 0.482 + 0.324 0.483 £+ 0.317 0.553 + 0.283 0.479 £ 0.332 0.475 £ 0.319 0.541 £ 0.292
HEOM-R 0.482 + 0.324 0.483 + 0.317 0.554 £+ 0.283 0.483 + 0.329 0.480 4+ 0.316 0.548 + 0.288
HVDM 5% 0.480 £ 0.328 0.480 £ 0.320 0.549 £ 0.288 10% 0.475 £ 0.331 0.472 £ 0.320 0.539 £ 0.295
HVDM-R ?0.480 + 0.327 0.479 + 0.320 0.549 + 0.286 ° 0.482 4 0.325 0.478 + 0.314 0.547 + 0.285
HVDM-S 0.485 + 0.328 0.485 + 0.320 0.556 + 0.286 0.487 + 0.329 0.481 + 0.316 0.550 + 0.288
MDE 0.485 + 0.329 0.484 + 0.319 0.552 £ 0.288 0.480 + 0.332 0.474 £ 0.319 0.544 + 0.290
SIMDIST 0.481 + 0.328 0.482 + 0.320 0.551 £ 0.286 0.483 + 0.332 0.478 4+ 0.320 0.544 £ 0.294
BASELINE 0.461 £ 0.337 0.459 + 0.332 0.516 + 0.311 0.436 + 0.334 0.437 £ 0.334 0.489 + 0.317
HEOM 0.463 £ 0.326 0.454 4+ 0.315 0.519 £ 0.293 0.450 £+ 0.320 0.437 4+ 0.309 0.505 £ 0.288
HEOM-R 0.469 £ 0.320 0.463 + 0.311 0.529 + 0.289 0.461 + 0.314 0.445 £+ 0.302 0.514 + 0.279
HVDM 20% 0.470 £ 0.327 0.460 + 0.314 0.526 £+ 0.292 30% 0.462 + 0.321 0.444 4+ 0.307 0.512 £ 0.285
HVDM-R 0.466 £ 0.329 0.455 £ 0.315 0.522 £ 0.292 0.456 £ 0.321 0.441 £ 0.309 0.507 £ 0.289
HVDM-S 0.479 + 0.323 0.468 + 0.310 0.539 + 0.284 0.476 + 0.321 0.456 + 0.303 0.532 + 0.276
MDE 0.476 £+ 0.328 0.465 £+ 0.314 0.534 + 0.291 0.470 + 0.324 0.452 £ 0.307 0.523 + 0.284
SIMDIST 0.468 £ 0.331 0.458 + 0.319 0.523 £ 0.296 0.456 + 0.325 0.440 4+ 0.311 0.509 + 0.289

and 30%). However, despite HVDM-S presents the highest performance results,
it becomes clear from the analysis of Table [3| that the classification performance
is overall poor, even if data is imputed. As we focus solely on the analysis of the
effect of data imputation, the datasets did not suffer any pre-processing, such
as data oversampling, outlier removal or cleaning approaches. As biomedical
datasets are often complex by nature, presenting a considerable imbalance ratio
and associated problems such as small disjuncts, overlap and outliers, among oth-
ers, we moved to a more detailed analysis of the characteristics of the collected
datasets, with the objective to determine if some datasets were in fact complex
and whether that complexity could be related to differences in performance for
some distance functions. To that end, several data complexity measures where
computed for each dataset. These metrics regard key properties of datasets such
as geometry/topology (L3, N4), class overlap (F1, F2, F3) and class separabil-
ity (L1, L2, N1, N2 and N3) and have proved to accurately provide important
meta-information on the learning abilities of classifiers, especially in imbalanced
domains [II]. We found the most informative features to be related to class over-
lap (F1) and class separability (L2 and N1), as presented in Fig. [2| F1 measures
the highest discriminative power of all features in data and lower values indicate
more complex problems. In turn, L2 and N1 focus on the characteristics of the
decision boundary between classes, where L2 measures the error rate of a support
vector machine with linear kernel and N1 measures the fraction of data points
connected to the opposite class by an edge in a minimum spanning tree. On con-
trary to F1, higher values of L2 and N1 indicate more complex problems. Accord-
ingly, the top most complex datasets are caesarian, dmft-health, pharynz-Iyear,
pharynz-status, plasma-retinol, schizo, and veteran (Fig. [2)), which were further
analysed. Fig. |3| compares the mean performance (k = 1 and 3, for a more local
behaviour of distances) of each dataset for PLAIN variant and a missing rate of
30%, where differences are more relevant (PLAIN variant is also the most likely
to encounter in real-world domains where missing data is scattered throughout
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Fig. 2: Data complexity measures of the considered datasets: F1, L2 and N1.
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Fig. 3: CART sensitivity results for most complex datasets, considering a PLAIN
variant and 30% of missing data (considering k& = 1 and 3 for a more local
analysis).
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the entire dataset). For simplicity, and to determine clinical relevance, we focus
on a direct comparison of HVDM-S with the BASELINE and the most common
used approaches in the literature for healthcare data, i.e., HEOM and HVDM
[487]. However, results for the remaining distances follow a similar trend (for
MDE, some datasets obtain similarly performances to HVDM-S, as expected
from Table [3). An analysis of Fig. |3| reveals that HVDM-S provides a substan-
tial improvement in sensitivity results for more complex datasets (especially in
comparison to HEOM). This suggests that choosing a proper distance function
for imputation is important to produce quality training sets and that choice is
even more important when data is complex, as determining the most similar
patterns becomes a more crucial task to obtain better classification results. To
confirm our hypothesis, we have also analysed the impact of increasing missing
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rate, showing that, as expected, the performance results decrease considerably
for more complex datasets (caesarian, dmft-health, pharynz-status, schizo, and
veteran). As a basis for comparison we added kidney and thyroid-vl datasets,
the two datasets with highest discriminative power, i.e., highest F1 values (Fig.
, which confirms that for easier classification problems, the increase of miss-
ing rate has a low impact on classification performance and that, in such cases,
differences in performance of models learned from data imputed with different
distances are negligible. As a final remark, future work will be focused on fur-
ther analysing other meta-features to fully characterise the data domains and
investigate their relation with obtained imputation and performance results.

5 Conclusions and Clinical Relevance

From the experimental results, the following conclusions may be derived:

o Distance functions impact KNN imputation, where HVDM-S has proved
to be a feasible and robust approach for the imputation of heterogeneous
biomedical data, independently of the type of features affected by missing
data (generation variant);

o« HVDM-S shows a particular good behaviour when compared to more com-
mon distance function (HEOM and HVDM) for more complex datasets,
indicating that choosing a proper distance function becomes crucial when
data is complex;

o Missing Data should be considered as yet another data difficulty factor for
imbalanced domains, as it influences the computation of distances and as-
signment of nearest neighbours, becoming specially critical when other fac-
tors are present in data;

In an era where the biomedical community is shifting its attention towards the
paradigms of Personalised Medicine, where machine learning algorithms play an
instrumental role, guaranteeing the quality of data to develop decision-support
models is of extreme importance. In that sense, to improve the quality of biomed-
ical data, we explore KNN imputation on the performance of CART models in
different missing data scenarios. These are both non-parametric, interpretable
and explainable supervised models, which is a critical aspect in healthcare do-
mains. Our results show that distance functions considerably impact data im-
putation and that for complex data, such as biomedical data, the choice of a
proper distance function is of utmost importance. Furthermore, we also show
that HEOM, although widely used across medical domains may not be the go-
to approach, as others have shown to be more beneficial, especially HVDM-S.
Despite the work is focused on data imputation, distance functions are also )
crucial for the success of other approaches on clinical domains, such as clustering
medical data and subgroup analysis and i) critical for the development and im-
provement of accurate decision-support models operating with distances among
patterns, such as neural networks with radial basis functions or self-organising
maps, often used in healthcare domains. Finally, as discussed throughout this
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work, biomedical data is also subjected to other difficulty factors, which often
require some preprocessing prior to developing the classification model. For the
case of biomedical imbalanced data with additional data irregularities, popular
strategies are based on data oversampling, where a plethora of approaches also
rely on the computation of distances to generate new synthetic data.
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Table 1: Mathematical formulation of heterogeneous distance functions that handle missing data.

HEOM HVDM

1, if j is missing in x4; or xzpj, 1
dj(zaj,zpj) = § do(zaj,xzpj), if jis a categorical feature, (1)
dn(zaj,zBj), if jis a continuous feature

s if j is missing in x4 or zpj,
dj(zaj,zBj) = § dvam(zaj,xB;), if jis a categorical feature, (2)
daigs(xaj,xBj), if jis a continuous feature

0, ifzxa; =xpj; Nz i Napg.c|?
d ) ) — ’ J J (3 dyvdm i ) = (e} J _ J 4
o(®aj,25;) {1, otherwise 3) am (24, ¢5;) \/ZC:l Nz 45 Nzp; @)
TA;—TR; TpA; TR
dn(zajszpj) = W@) dairs(zaj,v8;) = %(6)
HEOM-R/HVDM-R/HVDM-S SIMDIST
d;(x v5;) 1, if j is missing only on x4, or xzpj, ) S %7 if either z4; or xp; are missing, )
. . ) — - S A ms
J\TAG, BBy 0, if j is missing in both 4, and zp; ABs z ( éfj) » if both z4; and zp; are observed
0, if x4; and xp; are both missing,
dj(waj,@Bj) =41,

. .. . . 0 ifxa; # By
if z4; or xp; are missing and j is continuous, (9) sap; =< .’ . i 7 TBy (10)
if . s e .. . 1 1_Plj7 1fwAj = TBj
dydm(xaj,xB;), if xa; or xp; are missing and j is categorica

lza;—=Bjl

sapj =1— maz(x;)—min(z;)

(11)

MDE

MDg(za;,28;) = (va; — v5;)*(12)

0, ifzxa; =xp;
MDo (245, 25;) = {1 othe?fwise ’ (13)

MDg(zaj,xB;5) = E((ﬂf - xBj)2) = [p(@)(z — wp;)’dz = (xp; — pe)® + 02 (14)
MDo (zaj,285) = 32, P(2) do(2,285) = Xypy g, P(@) = 1 = p(z5;)(15)
MD (w5, 755) = [ [ p@)p(y) (@ — v)*dedy = (B(@) — Bw))” + 02 + 03 = 203(16)

MDo(z4;,255) = 3, 32, P(@)p(y) do(@,y) = 3, Xorsy P(@)p(y) =1 = 3, p? () (17)

Notes: In the formulae of MDg and M Do, we consider ¢ = z; and pu, and o, are equivalent to pg. and o, (mean and standard deviation of all the observed values of z;.)

Similarly, we consider the auxiliary variable y = x;. E(x) corresponds to the expected value of z and p(x) is the probability distribution of .
For SIMDIST, P; is the fraction of patterns that takes value x;; for ;.

In practice, Pj; is the fraction of examples that assume value x4, or xp; for z;, since for this computation they are equal.
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