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Abstract Current research on imbalanced data recognises that class imbalance
is aggravated by other data intrinsic characteristics, among which class overlap
stands out as one of the most harmful. The combination of these two problems
creates a new and difficult scenario for classification tasks and has been discussed
in several research works over the past two decades. In this paper, we argue that
despite some insightful information can be derived from related research, the joint-
effect of class overlap and imbalance is still not fully understood, and advocate for
the need to move towards a unified view of the class overlap problem in imbalanced
domains. To that end, we start by performing a thorough analysis of existing liter-
ature on the joint-effect of class imbalance and overlap, elaborating on important
details left undiscussed on the original papers, namely the impact of data domains
with different characteristics and the behaviour of classifiers with distinct learning
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biases. This leads to the hypothesis that class overlap comprises multiple repre-
sentations, which are important to accurately measure and analyse in order to
provide a full characterisation of the problem. Accordingly, we devise two novel
taxonomies, one for class overlap measures and the other for class overlap-based
approaches, both resonating with the distinct representations of class overlap iden-
tified. This paper therefore presents a global and unique view on the joint-effect
of class imbalance and overlap, from precursor work to recent developments in
the field. It meticulously discusses some concepts taken as implicit in previous
research, explores new perspectives in light of the limitations found, and presents
new ideas that will hopefully inspire researchers to move towards a unified view
on the problem and the development of suitable strategies for imbalanced and
overlapped domains.

Keywords Class Imbalance · Class Overlap · Data Intrinsic Characteristics ·
Class Overlap Complexity Measures · Class Overlap-Based Approaches · Class
Overlap Representations

1 Introduction

Class imbalance refers to a disproportion in the number of examples belonging to
each class of a dataset and is known to bias classifiers towards the most represented
concepts [43]. This situation is especially critical when minority class concepts are
associated with a higher misclassification cost, such as the diagnosis of rare diseases
[110, 115]. Although this is an important problem in isolation, its combination
with other factors creates a much more difficult setting for classifiers, as growing
research has brought to light [86, 101, 125]. These are referred to as data intrinsic
characteristics [43, 86], data difficulty factors [125, 145] or data irregularities [34],
and among others, include the problem of class overlap.

Class overlap has received much attention in the past two decades, since it is
a source of complexity for traditional classification paradigms (e.g., max-margin
classifiers, Bayesian classifiers, decision trees) [34, 62] and has been observed in
several application domains (e.g., character recognition [84], software defect pre-
diction [23] and protein and drug discovery [90, 114]). Indeed, among all data
intrinsic characteristics, class overlap has been recognised as the most harmful
issue for pattern classification [47, 58, 120] and remains one of the most stud-
ied topics nowadays [51, 116, 135]. Assuming an equal representation of classes
(i.e., balanced domains), class overlap occurs when regions of the data space are
populated by a similar number of training examples of each class [86, 36, 81]: as
classes are equally represented in the same regions, their discrimination becomes
more complicated. In imbalanced domains, the problem is aggravated since the
few minority examples that exist may be mostly located in regions populated by
the other class(es) as well.

Over the years, several research works have focused on characterising the com-
bined effects of class imbalance and overlap. To that end, researchers created sev-
eral synthetic data domains with different imbalance ratios and overlap degrees.
Then, one or several classifiers were tested and classification results were evaluated,
showing that class imbalance alone cannot be responsible for the deterioration of
classification performance, and that class overlap plays an important role as well.
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Therefore, the focus of related work was, essentially, to establish class overlap as
a difficulty factor for classification tasks, especially in the presence of class im-
balance. That caused the analysis of other important aspects to be neglected to
some extent, such as the learning biases of used classifiers and the peculiarities of
the considered data domains. In fact, some authors consider only a single classi-
fier [55, 36, 106] or similar learning paradigms (e.g., tree and rule-based classifiers)
[101], while the data domains are also considerably different among research works.
By cross-referencing the obtained results across related work, important aspects
that remained vague or understudied in previous research can now be brought to
discussion on a deeper level.

In this work, we review the existing literature on the joint-effect of class imbal-
ance and overlap, summarising their main conclusions and performing a thorough
cross-referencing of results in order to analyse some details left undiscussed in the
original papers. In particular, we focus on analysing the effect of the characteristics
of studied data domains (e.g., data decomposition, structure, dimensionality and
data typology) and the behaviour of classifiers with distinct biases (instance-based,
rule and tree-based, Bayesian classifiers, neural networks, support vector machines
and linear discriminants). A cross-reference of research results allows the evalu-
ation of classifiers under several conditions (data domains, dimensionality, class
imbalance and overlap) and effects on classification performance are explained
from a theoretical (considering the known biases of classifiers) and empirical (con-
sidering the used data domains and obtained experimental results) perspective.
In sum, we extend the current body of knowledge on the combination of class
imbalance and overlap by focusing on the following research topics:

• What is the influence of intrinsic data characteristics (data decomposition, data
structure, data dimensionality, data typology) on the classification performance
for imbalanced and overlapped domains?
• How do classifiers with different nature (distinct learning biases) handle im-

balanced and overlapped domains?

The analysis conducted over seminal work yielded important insights regard-
ing the joint-effect of class imbalance and overlap. First, it allowed to derive some
important lessons learned regarding the characteristics of the domains and na-
ture of classifiers, two understudied topics that remained mostly hidden in related
research. Then, it allowed to identify important limitations regarding the char-
acterisation of class overlap in imbalanced domains and ultimately, to the idea
that class overlap comprises several representations, which need to be quantified
and analysed accordingly. On that note, a discussion on identifiability and quan-
tification of class overlap, especially in real-world domains, arises naturally. We
therefore provide a comprehensive review of class overlap measures and establish
a novel taxonomy that defines distinct groups of measures according to the class
overlap representations they are able to characterise. We conclude the paper by
analysing emergent class overlap-based approaches applied to real-world imbal-
anced domains. It is our intent to show that, despite recent work suffers from the
same limitations found in seminal work in what concerns the characterisation and
quantification of class overlap, it is possible to associate the underlying behaviour
of approaches to the class overlap representations they are attentive to. Establish-
ing this association is a step towards the choice and development of specialised
approaches depending on the characteristics of the domains. We therefore devise a
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taxonomy of class overlap-based approaches aligned with the taxonomy proposed
for class overlap measures.

Existing surveys mostly provide a bird’s eye view on handling imbalanced data
classification, state-of-the-art methods and applications, and current trends [62,
72, 76], although setting aside the study of other difficulty factors embedded in
the nature of data. Some also touch upon the definition of data characteristics
and their impact on classification tasks [34, 46]; however, without a specific fo-
cus on the joint-effect of class imbalance and overlap and its synergy with other
characteristics of the data domains, different learning biases, quantification, or
contemporary approaches. Related research in the field of classification complex-
ity provides a generic overview of data complexity measures and their use across
several application areas [88]. However, there is no established set of complexity
measures for class overlap, as measures are grouped according to their underly-
ing quantification mechanisms (e.g., feature-based, neighbourhood-based), rather
than the insight they provide on the domain (e.g., feature overlap, instance overlap,
structural overlap). Several recent measures linked to the class overlap problem are
also comprised in an extra-category instead of thoroughly reviewed, as the main
complexity measures described refer to those proposed by Ho and Basu on their
pioneer work on the topic [66]. There is also no discussion in what concerns the
adaptation of existing measures to imbalanced domains. The most related research
is perhaps the recent review by Pattaramon et al. [135], which also discusses some
emergent class overlap-based methods in imbalanced domains. However, no con-
siderations regarding a taxonomy of methods or representations of class overlap
are given. Of note is that authors also agree with the need of a well-established
definition and measurement of class overlap and a standard measure for the class
overlap degree in real-world domains, meeting our line of thought. What we put
forward with this research is precisely a first step towards a consensus of the re-
search community on this matter.

Contrary to previous works, this paper focuses on a critical analysis on the
problem of class overlap in imbalanced domains, as it is considered the most
harmful issue among data difficulty factors [47]. It focus specifically on the in-
terrelations of class imbalance and overlap and their joint-effect on classification
performance, considering two other influential factors often neglected in related
research: the characteristics of the data domains, and the nature of classifiers. Ad-
ditionally, more than providing a comprehensive review of related work in the field,
this work presents an in-depth conceptual discussion of key concepts, scrutinising
some of the assumptions and insights from previous work and their implications
for real-world domains. What follows is a conceptualisation of class overlap as a
heterogeneous concept, comprising multiple sources of complexity, and a theoreti-
cal evaluation of its challenging aspects for imbalanced domains. We also present a
critical discussion on both i) the identifiability and quantification of class overlap
in real-world contexts and ii) the state-of-the-art methods to handle the problem
in imbalanced data contexts.

In sum, we provide a global and unique vision on the joint-effect of class im-
balance and overlap, identifying existing theoretical and empirical limitations in
previous and current research, and discussing new ideas that advocate towards
a unified view on the problem. In detail, the contributions of this work are as
follows: (i) a revision of related work on the joint-effect of class imbalance and
overlap; (ii) a discussion of the impact of intrinsic data characteristics in syn-
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ergy with class imbalance and overlap; (iii) an overview of the joint-effect of class
overlap and imbalance on the performance of classifiers with different learning
biases; (iv) a motivation for the characterisation of class overlap according to dif-
ferent perspectives and a discussion of distinct class overlap representations; (v)
a review of measures of class overlap and a taxonomy aligned with its different
representations; (vi) a review of the state-of-the-art approaches for imbalanced
and overlapped domains and a taxonomy that resonates with the identified class
overlap representations; and (vii) the identification of limitations of previous and
current research and a motivation for a unified view of the class overlap problem
in imbalanced domains.

To our knowledge, this work provides the most comprehensive review on the
subject, from seminal work to emergent research. More importantly, this is the
first work to put forward that class overlap observes a multitude of representa-
tions and systematises both class overlap measures and approaches towards that
characterisation.

The reader should navigate this paper as follows. Section 2 reviews seminal
work on class imbalance and overlap, describing the experiments and data do-
mains in detail and elaborating on their main conclusions. Then, Sections 3 and
4 discuss the lessons learned with respect to the impact of the characteristics
of the data domains and the learning biases of distinct classifiers, respectively.
While Section 3 hints at distinct representations of class overlap, Section 4 re-
inforces the idea that linking the behaviour of classifiers to the characterisation
of domains would prove transformative to future research in the field. In Section
5, we detail the limitations found in seminal work on synthetic data and discuss
why they prevent a full understanding of the joint-effect of class overlap and im-
balance, while also motivating the need to revise existing solutions for real-world
domains. Hence, Sections 6 and 7 are focused on revising class overlap measures
and class overlap-based approaches applied to real-world imbalanced domains. We
start both sections by presenting a global view on the topic and introducing our
proposed taxonomies with supporting schemas. Then, class overlap measures are
described, formalised, and illustrated in detail, and class overlap-based approaches
are presented, respectively, both divided by category. At the end of each section
we present our summarising comments, discussing the most important limitations
and open challenges for research. Finally, Section 8 summarises future directions
that the research community should debate for a renewed view on the joint-effect
of class overlap and imbalance, hopefully leading to new breakthroughs in the
field, whereas Section 9 ends the paper, providing an overview of the main topics
discussed throughout this work.

2 On the joint-effect of Class Imbalance and Overlap

In this section, we review the existing literature on the joint-effect of class im-
balance and overlap. To help the reader navigate this section, Table 1 presents
the related work in chronological order, focusing on their objectives, characteri-
sation of data domains, experimental design (controlled parameters and studied
classifiers), and main conclusions. In what follows, we discuss the related research,
showing how the co-occurrence of class imbalance and overlap poses a more diffi-
cult problem that solving each issue independently. We focus on the global insights
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regarding the joint-effect of class imbalance and overlap rather than the details of
each research work. In Sections 3 and 4, we will elaborate on the lessons learned
in what concerns the characteristics of the studied domains and classifiers.

Prati et al. [106] experimented with several variations of class imbalance and
overlap by studying two Gaussian clusters where the distribution of minority and
majority examples, as well as the distance between cluster centroids, could be
changed (Figure 1). Authors showed that when the distance between class centroids
was zero, the classification was extremely difficult, independently of the considered
class imbalance. Conversely, as the distance between class centroids increased,
the class overlap problem ceased to exist and the classification results were high,
independently of the percentage of minority examples.

Garćıa et al. [55] studied the combined effects of these two problems on instance-
based classification algorithms (1-nearest neighbour classifier). Authors used artifi-
cial domains composed of two squares, each having a uniform distribution of points
from the majority and minority classes, respectively (Figure 1). Whereas the class
imbalance was fixed, the class overlap was manipulated through the distance be-
tween square centres, i.e., the majority class was moved towards the minority class
in a stepwise manner (as per the original paper, we will refer to this configuration
as a “typical situation”). While the classification results were maximal when there
was no class overlap, the performance degraded as the overlap increased.

In [56, 57], in addition to typical situations, Garćıa et al. focused on a partic-
ular imbalanced scenario where the minority class was more represented than the
majority class in the overlap region (considered an “atypical situation”, as shown
in Figure 1). In this case, the local class imbalance (in the overlap region) was
different from the global class imbalance (in the entire domain). Authors consid-
ered several classification paradigms (please refer to Table 1) and showed that in
typical situations, the classification performance of all classifiers on the minority
class degraded with increasing class overlap. However, local classifiers were more
suited to the recognition of the minority class, while global classifiers performed
better on the majority class. In atypical situations, classifiers with a global nature
benefited the recognition of the minority class, while local classifiers were better
for the majority class.

In [58], Garćıa et al. further focused on the performance of KNN classifier (vary-
ing the value of k) versus the performance of other classifiers (Table 1) in typical
and atypical situations, aiming to explain the influence of overall imbalance, local
imbalance and the size of the overlap region on the behaviour of KNN classifier.
In typical situations, smaller values of k were more suited to the recognition of the
minority class, whereas higher values benefited the recognition of majority class
examples. In turn, for atypical situations, the increase of k benefited the minority
class and no significant changes occurred in the performance of the majority class,
showing that KNN was more dependent on the local imbalance than on the global
imbalance. When the overlap region was not balanced, the local imbalance ratio
was more important than the size of the overlap region for KNN performance.
Finally, for similar configurations of class imbalance and overlap, authors found
that the complexity of the boundary decision was yet another difficulty factor for
classifiers [58].

Denil and Trappenberg [36] studied the joint-effect of class imbalance and
overlap on the performance of Support Vector Machines (SVM) by varying factors
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individually and simultaneously for different training set sizes (Figure 1). For small
training set sizes, as well as for small amounts of overlap and imbalance, the
performance of SVM assuming that these factors are independent was similar
to the one obtained from their combination. As the training set size increased,
the influence of class imbalance was negligible and class overlap was the main
responsible for the performance degradation. Thus, assuming that both factors
were independent, the performance results obtained for large training sets in the
presence of overlap alone should have been similar to the performance when both
factors were present in data. However, the performance was even lower, indicating
that the issues were far more serious in combination that in isolation [36].

Related work on the joint-impact of class overlap and imbalance also includes
the research of Napierala et al. [101], Stefanowski [124], and Wojciechowski and
Wilk [145]. Rather than considering overlap regions or areas, the focus shifted to
the data typology of the minority class (i.e., considering different types of data
examples) to approximate certain difficulty factors, such as class overlap. Class
overlap was approximated by focusing on borderline examples, as they are highly
related to the problem of class overlap (i.e., they appear in the borderline between
classes). Overall, authors studied the influence of disturbing the minority class
boundaries by adding an increasing number of borderline examples to domains
with different characteristics – paw, clover/flower and subclus domains (Figure 1).
Napierala et al. [101] showed that increasing the number of borderline examples
highly degraded the performance of classifiers. Stefanowski [124, 125] focused on
the subclus dataset and studied the impact of changing the number of subclusters
(class decomposition), changing the percentage of borderline minority examples
(class overlap) and changing the imbalance ratio. Experiments showed that the
combination of class decomposition and overlap seemed to affect classification per-
formance more than the increase of the imbalance ratio, and that for non-linear
shapes the performance degradation was more accentuated. Wojciechowski and
Wilk [145] further showed that data typology significantly affected the classifica-
tion results more than class imbalance or data dimensionality.

Finally, Mercier et al. [98] reproduced several artificial data domains considered
in previous works and analysed the performance degradation of classifiers with
different learning biases (please refer to Table 1). Classifiers that learn on the
basis of data space fragmentation were less affected by class overlap than linear
classifiers (further details will be given throughout Section 4).

According to the key insights of the discussed research, the following conclu-
sions can be established:

• Class overlap acts as a difficulty factor for classification, more than class imbal-
ance. Indeed, although the class imbalance generally deteriorates the perfor-
mance of classifiers, if there are no other complex data characteristics, then the
class imbalance itself does not affect classification, regardless of the imbalance
ratio [106, 55];
• These two problems do not have independent effects and the degradation

caused by their combination is not equivalent to the aggregation of the degra-
dation caused by each one individually [36]. Class overlap and imbalance have
hidden dependencies that are not noticeable by analysing them separately;
• The joint-effect of class imbalance and overlap strongly depends on the nature

of classifiers, the general characteristics of the domain (class decomposition,
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data dimensionality, complexity of the decision boundaries) and on the local
characteristics of the overlap region (local imbalance and data typology) [58,
98, 145].

In the following sections, we will detail the lessons learned in what concerns
the characteristics of the studied domains and classifiers. The provided analysis is
supported by a thorough examination of experimental results obtained in related
research, which were aggregated by data domain and classifier1.

1 The reader may find supporting information in the supplementary material online at
https://student.dei.uc.pt/~miriams/pdf-files/AIR_2021_Appendix.pdf
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Fig. 1: Artificial domains considered in related work. The red circles represent
the majority class examples (MAJ) while the blue crosses represent the minority
class examples (MIN). Prati et al. [106] defined class overlap as the distance be-
tween cluster centroids of different classes. Garćıa et al. [55, 56, 57, 58] considered
both typical and atypical configurations where class examples were distributed over
squares of the same size. In typical domains, class overlap may either be determined
as a fraction of the area that is overlapped over the total minority area, or over
the total majority area. For atypical domains, class overlap was not quantified nu-
merically. Denil and Trappenberg [36] divided the domains into four equal regions
with alternating class memberships. Class overlap was captured by the extent to
which adjacent regions intertwined. Napierala et al. [101], Stefanowski [124, 125],
and Wojciechowski and Wilk [145] defined paw, clover/flower and subclus domains
with increasing amounts of borderline minority examples (BORDER), represented
by the black stars. Mercier et al. [98] reproduced several artificial data domains
considered in previous works.
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Table 1: Summary of existing literature on the joint-effect of class imbalance and overlap. For each related work are identified the
objectives of the study, the used domains and controlled parameters, used classifiers, and major conclusions.

Study Objective Domains2 Controlled Parameters Classifiers Major Conclusions

Prati et al.
2004 [106]

Study the combined effects
of class imbalance and over-
lap.

Two artificial Gaussian clus-
ters (majority and minority)
with unitary standard devia-
tion (10.000 examples, 5 di-
mensions).

Distance between cluster cen-
troids (1 to 9 standard devia-
tions). Percentage of minority
class examples (1% to 50%).

C4.5

Imbalance ratio is not the sole factor that
affects classifiers: increasing amounts of
class overlap significantly hinder perfor-
mance results.

Garćıa et al.
2006 [55]

Study the effects of class
imbalance and overlap on
instance-based classifica-
tion.

Two uniform squares of size
50 × 100 (majority and mi-
nority) with an IR of 4:1
(500 examples, 2D). Phoneme,
Satimage, Glass and Vehicle
datasets from UCI Repository.

Distance between square cen-
tres (6 different configura-
tions). IR fixed at 4:1 and 500
examples.

1NN
The combination of imbalance and overlap
causes a deterioration of classification per-
formance.

Garćıa et al.
2007 [56]

Determine whether perfor-
mance measures are able to
distinguish between typical
and atypical situations.

2-dimensional uniform squares
creating typical and atypical
situations.

Distance between square cen-
tres (Typical Situation). Den-
sity of examples (Atypical Sit-
uation). IR fixed at 4:1 and
500 examples.

1NN, MLP,
NB, RBF,
C4.5

Specificity and Sensitivity results seem to
be good descriptors of the data complexity.

Garćıa et al.
2007 [57]

Study the behaviour of sev-
eral classifiers on imbal-
anced and overlapped do-
mains.

2-dimensional uniform squares
creating typical and atypical
situations.

Distance between square cen-
tres (Typical Situation). Den-
sity of examples (Atypical Sit-
uation). IR fixed at 4:1 and
500 examples.

1NN, MLP,
NB, RBF,
C4.5, SVM

Performance of classifiers is influenced by
the type of situation (typical versus atypi-
cal).

Garćıa et al.
2008 [58]

Study the behaviour of KNN
versus other classifiers, in
typical and atypical situa-
tions.

2-dimensional uniform squares
creating typical and atypical
situations.

Distance between square
centres (Typical Situation,
IR 4:1). Density of examples
(Atypical Situation, IR 4:1
and 50:1). 500 examples.

KNN, MLP,
NB, RBF,
C4.5

The class more represented in the overlap
region is more easily recognised by global
learning classifiers, while the class less rep-
resented in that same region benefits the
most from more local classifiers.

Denil and
Trappenberg
2010 [36]

Study the effects of class
imbalance and overlap in-
dividually and in combina-
tion, with varying training
set sizes.

Points generated in 4 regions
with alternating class member-
ships, inside a square of length
1.

Overlap between classes (µ).
Imbalance between classes (α).
Size of training sets.

SVM

The combination of imbalance and over-
lap is more severe for classification perfor-
mance than each factor taken individually.
However, class overlap seems more preju-
dicial for classification than class imbal-
ance. Increasing the training set size im-
proves the classification performance when
class imbalance is evaluated in isolation,
yet degrading such performance when there
is also class overlap.

Napierala et al.
2010 [101]

Study the impact of disturb-
ing the borders of subregions
of the minority class.

2-dimensional domains (paw,
clover/flower and subclus) with
800 examples.

Percentage of borderline mi-
nority examples (0, 30, 50 and
70%). IR 7:1 and 800 exam-
ples.

C4.5,
MODLEM

Increasing the percentage of borderline ex-
amples strongly deteriorates the perfor-
mance of classifiers.

To be continued on the next page. . .
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Table 1: Continued from previous page.

Study Objective Domains2 Controlled Parameters Classifiers Major Conclusions

Stefanowski
2013 [124]

Study the influence of over-
lapping in the boundary be-
tween classes (overlap was
expressed as a percentage of
borderline examples in the
minority class).

2-dimensional domain (sub-
class data) with 800 examples.

Percentage of borderline mi-
nority examples (0, 10, 20%).
IR 5:1 and 9:1 and 800 exam-
ples.

C4.5,
Jrip,
KNN

Besides the decomposition of the minority
class, overlap is a critical factor that affects
classification. Presence of class decompo-
sition and overlap causes a larger perfor-
mance deterioration than class imbalance.

Wojciechowski
and Wilk
2017 [145]

Analyse the impact of class
imbalance, data typology,
and dimensionality in classi-
fication performance.

Artificial domains with vary-
ing shapes (paw, clover/flower)
and dimensionality (2, 3, 5 and
7 dimensions).

IR (5:1, 7:1, 9:1, 13:1). Num-
ber of examples fixed to
1200 for paw and 1500 for
clover/flower. Number of minor-
ity borderline examples (0%
and 30%).

KNN, C4.5,
PART, NB,
RBF, SVM

Data typology is more critical than class
imbalance and data dimensionality. KNN
and SVM-RBF outperformed the remaining
classifiers.

Mercier et al.
2018 [98]

Analyse the performance
degradation of several clas-
sifiers in overlapped and
imbalanced domains.

Artificial domains with vary-
ing shapes (clusters, garcia,
clover/flower, paw, subclus) and
dimensionality (2 to 40 dimen-
sions).

IR (1:1, 2:1, 4:1, 6:1, 8:1 and
10:1). Percentage of minor-
ity safe and borderline ex-
amples (100/0 to 0/100) for
clover/flower, paw, subclus. Dis-
tance between cluster cen-
troids (clusters) and square
centres (garcia). 1500 exam-
ples.

CART, KNN,
FLD, NB,
MLP, SVM

MLP and CART seem more robust to class
overlap. KNN and linear SVM are the most
aligned with degOver. Data dimensionality
and structure/shape play an important role
in explaining performance results.

2 Some of the artificial domains discussed in related work are available at http://keel.es
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3 Lessons learned on the characteristics of the data domains

From the analysis of related research, three main factors seem influential in syn-
ergy with class imbalance and overlap: local data characteristics, data structure
and data dimensionality. We tackle each component independently to provide a
summary of the most relevant findings and stress their significance.

3.1 Local Data Characteristics: Local Imbalance and Data Typology

In related work, the combination of class imbalance and overlap has different effects
on the performance of classifiers, depending on the characteristics of the overlap
region. In particular, the local imbalance in the overlap region is one of the most
impactful factors [56, 57, 58]:

• When the class imbalance in the overlap region is the same as the global
imbalance, classifiers with a more global nature tend to misclassify the minority
examples as classes overlap, thus prioritising the majority class. Conversely,
classifiers with a local nature make a decision regarding the class of examples
based on their local neighbourhood, thus avoiding the bias towards majority
concepts;
• When the minority class is dominant in the region of overlap, classifiers based

on a more global learning obtain better results on the minority examples while
more local classifiers work better for the majority class.

In sum, more global classifiers are able to better recognise the class more rep-
resented in the overlap region, whereas local classifiers perform better on the less
represented class [58]. Note, however, that the dominance of a given class in the
region of overlap illustrates a type of distribution skew [34]. In these situations, the
results can be quite different from what is expected in standard imbalanced do-
mains, such as the minority class obtaining better performance than the majority
class (in the case of binary-classification problems), if the minority class is more
represented in the overlap region. In the scenarios discussed in related work (atyp-
ical situations), the distribution skew is due to the local imbalance in the overlap
region. However, distribution skews may arise irrespective of the class imbalance in
the domain, e.g., they can be due to the data distribution/sparsity in the overlap
region. They are, however, intrinsically related to the overlap between classes, and
may give rise to particular representations of the problem, where the local char-
acterisation of data is fundamental to fully understand the type of degradation
created.

Data typology is also identified as one of the most important factors affecting
classification performance in imbalanced and overlapped domains. The term “data
typology” corresponds to a neighbourhood-based categorisation of examples into
different types. Currently, four main categories are established and followed in re-
cent works: safe, borderline, rare, and outlier examples [100]. It should be noted
that although related work emphasises the number of minority borderline exam-
ples as relating to the problem of class overlap, other types of examples can also
contribute to the whole overlap (e.g., non-safe examples, such as rare examples or
outliers). With respect to data typology, the following insights may be derived:
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• Data typology assumes a more influential role on the difficulty of classification
tasks than class imbalance or data dimensionality [145];
• Increasing the number of borderline minority examples has shown to severely

jeopardise the classification performance [124, 145], especially exacerbating the
deterioration of tree and rule-based classifiers [101].

Overall, related research has systematically demonstrated that it is important
to take the internal characteristics of the domains into consideration when studying
the joint-effect of class imbalance and overlap. Herein, we highlight the importance
of the local data characteristics in what concerns the existence of class distribution
skews and different types of examples comprised in data. In fact, we acknowledge
them as vortices of class overlap, i.e., existing representations of class overlap, as
will be further discussed in Section 6.

3.2 Data Structure: Non-linear Class Boundaries and Class Decomposition

Let us first define the overall understanding of “data structure” taken in this pa-
per. We treat the concepts of data structure, data shape and data morphology
interchangeably. With these terms we refer to the structural properties of the
data that comprise their form, the complexity of decision boundaries, and exist-
ing class decomposition. As an example, artificial domains in related work such
as clusters [106], squares [58], paw, clover/flower, and subclus all possess differ-
ent data structures, i.e., different morphologies, shapes, class decomposition, and
class boundaries of different difficulty (Figure 1). To this regard, the following
observations should be highlighted:

• More complex shapes are harder to learn, independently of the class imbal-
ance and overlap characteristics. Under the same configuration of class overlap
and imbalance, the classification performance has shown to be affected by the
characteristics of the decision boundaries (e.g., squares versus concentric circles
[58]);
• Domains presenting a complicated class decomposition are more difficult to

handle: subclus domains are generally easier to learn than paw, which in turn
are easier to learn than clover/flower domains;
• Tree and rule-based classifiers are especially affected by non-linear decision

boundaries, whereas classifiers with other learning paradigms (KNN and SVM
with a RBF kernel) do not seem as critically affected. Linear classifiers (FLD
and SVM with linear kernel) are strongly affected by the data structure, with
FLD often misclassifying all minority examples, irrespective of other factors
(class imbalance, class decomposition, and dimensionality);
• The combination of complicated class decomposition and class overlap is more

impactful for classification performance than the class imbalance for tree and
rule-based classifiers, and KNN [124]. However, the effect of class overlap seems
stronger than increasing class decomposition. This effect is especially critical
for smaller datasets or non-linear class boundaries [124].

Complex data structures pose difficult challenges for classifiers, irrespective of
other factors such as class overlap and imbalance. However, when occurring to-
gether with class overlap and imbalance, data structure acts as an exacerbator of
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a complex problem in itself, amplifying the deterioration of classification perfor-
mance. Non-linear decision boundaries require classifiers with a more local-based
learning or kernel adaptations. In turn, class decomposition further relates to the
problem of small disjuncts and the ability of classifiers to derive general or spe-
cialised rules [69]. It is therefore important to take these internal data character-
istics into consideration when defining appropriate solutions for the identification
and quantification of class overlap. This is especially true for real-world imbalanced
domains, where the underlying class distributions and the number and structure
of class concepts are unknown and difficult to discover or approximate.

3.3 Data Dimensionality

Although some research has focused on developing appropriate methods for di-
mensionality reduction in imbalanced domains [45], the combination of data di-
mensionality with other data characteristics has received very little attention in
the literature. With respect to class overlap, since the majority of related work
focuses on 2-dimensional domains, conclusions regarding data dimensionality are
based on the research of Wojciechowski and Wilk [145], and Mercier et al. [98]:

• Overall, performance results improve with higher dimensionality. Additionally,
increasing the class imbalance and class overlap seems to have a limited impact
on the classification results;
• For domains with more complex data typology (i.e., not just increasing bor-

derline examples but also rare and outlier examples), increasing the data di-
mensionality benefited the recognition of the minority class [145].

Class overlap seems to disappear as the dimensionality grows, which to some
extent is related to changes in the data density for higher domains. If the total
number of data examples is fixed, there will be a decrease of the data density
as the dimensionality increases. For the domains studied in [98, 145] (subclus,
paw and clover/flower domains), the majority class is especially affected, as it
becomes sparser very rapidly. Consider for instance the paw domains, depicted in
Figure 1. There are 3 well-defined minority class clusters (ellipsis) surrounded by
an integumental space of the majority examples scattered across the remaining
space. For higher dimensions, the minority clusters turn into hyper-ellipsis that
become denser in comparison to the volume of the majority hyper-rectangle, thus
improving class separability [145].

To this point, there is not much research on the evaluation of data dimensional-
ity on imbalanced and overlapped domains. For instance, it remains unclear what
would be the effects of dimensionality reduction techniques on the neighbourhood
of data examples and consequently on their data typology and classification per-
formance. For domains simultaneously affected by class overlap and imbalanced,
feature selection is also an understudied topic, although some research has begun
to shed some light on the subject [9, 30, 107]. These topics currently constitute
open challenges for research.
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4 Lessons learned on the nature of classifiers

Throughout related research, few works analyse the behaviour of classifiers beyond
a comparison of classification performance results:

• In [58], authors distinguish between local (KNN) and global classifiers (MLP,
NB, RBF, C4.5) and conclude that the performance of classifiers is related with
the local imbalance of data in the overlap region, showing that a more local
behaviour benefits the underrepresented concepts. Such behaviour is usually
portrayed by instance-based classifiers, such as 1NN;
• In [145], classifiers are divided into symbolic (C4.5 and PART) and non-

symbolic (KNN, NB, RBF, SVM). Symbolic classifiers lagged behind non-
symbolic classifiers, although this may be due to the more extensive parametri-
sation of some non-symbolic classifiers (KNN and SVM performing the best);
• In [98], the performance degradation is associated with the learning paradigm

of each classifier. Classifiers that work on the basis of data space fragmentation
(CART, MLP, and KNN) seem less affected by class overlap, whereas linear
classifiers (FLD and SVM-linear) perform the worst.

Understanding how the joint-effect of class overlap and imbalance (as well as
data characteristics) affects the performance of each classifier is a step towards the
definition of adequate strategies to handle the problems simultaneously. Overall,
related work has shown that major differences between the performance of clas-
sifiers rely on their ability to provide specialised decisions, where local learning
paradigms have shown to be better suited to several sources of complexity, such
as distributions skews, difficult data typologies, and complex data structures:

• Among all families of classifiers, instance-based classifiers (KNN) have shown
to be the most resilient to changes in class imbalance and overlap. Through-
out related research, KNN was able to achieve good results even for difficult
situations characterised by class distributions skews [58], and complex data
typology [145]. Its sensitivity to changes in local imbalance, and flexibility for
complex data structures, turn it into a simple, yet efficient, approach to study
the combination of class imbalance and overlap;
• Other classifiers have also shown to be adequate choices to handle issues simul-

taneously. RBF networks and SVM with RBF kernel have shown to be robust
to distributions skews and difficult data types, as well as more complex shapes.
Conversely, NB, although showing a high tolerance to class overlap and per-
forming successfully in distribution skews and complex domains, is somewhat
affected by class imbalance and difficult data types [58, 98, 145];
• Linear classifiers, and rule and tree-based classifiers obtained lower perfor-

mance results, presenting some limitations under several sources of complexity.

In what follows, we will focus on distinct families of classifiers and their learning
paradigms, aiming to provide an overview of their behaviour under imbalanced
and overlapped domains. In that sense, we consider four main families: Instance-
Based Classifiers, Rule and Tree-Based Classifiers, Bayesian Classifiers, Neural
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Networks, and Support Vector Machines and Linear Discriminants. For each family
of classifiers we highlight the most important findings from related work3.

Instance-Based Classifiers (KNN)
• As KNN presents a local nature, it effectively addresses regions with dif-

ferent local data densities, i.e., it does not present the general bias towards
the most represented class as most global classifiers;
• Smaller values of k guarantee its local nature and allow a more successful

recognition of less represented concepts in the overlap region. In turn, for
larger values of k, KNN approaches the behaviour of more global classifiers,
which benefits the more represented concepts in that region [58];
• Considering higher values k has also proven beneficial for the recognition

of the minority class when the number of borderline minority points in the
overlap region increases [145];
• The local behaviour of KNN is also advantageous for more complex data

structures (non-linear shapes), where KNN is among the top performers,
irrespective of the class imbalance and class decomposition [98, 124, 145].

Rule and Tree Classifiers (C4.5, CART, PART, MODLEM)
• Class overlap highly degrades the performance of rule and tree-based clas-

sifiers, more than class decomposition [101, 124]. Additionally, a faster per-
formance deterioration is observed for more complex non-linear shapes;
• MODLEM outperforms C4.5 when compared under the same conditions

(borderline minority examples, class decomposition and imbalance ratio)
[101]. Also, CART outperforms C4.5 even for higher percentages of minority
borderline examples and imbalance ratios [98, 101]. We hypothesise that
this difference may be due to the splitting criteria;
• Both pruned and unpruned versions of C4.5 and PART obtain nearly the

same results for the same amount of class overlap (borderline examples),
although for more difficult types of examples (rare and outlier examples),
unpruned versions generally perform better [145].

Bayesian Classifiers (NB)
• NB has performs successfully for both typical and atypical domains [58]

and more complex data shapes [98, 145];
• In [145], although NB is successful in classifying datasets with increasing

amounts of borderline minority examples, it performs poorly for more dif-
ficult types (rare and outlier examples);

Neural Networks (RBF, MLP)
• For typical and atypical domains [58], RBF and MLP obtain similar results.

However, for more complex shapes (atypical concentric circles), MLP fails
to recognise all minority examples whereas RBF network provides similar
results to atypical domains. This difference may reside on the activation
function of each network. MLP uses a sigmoid activation function, whereas
RBF uses a Gaussian activation function, which makes neurons more locally
sensitive [68].

3 The interested reader may find detailed information on the performance of each classi-
fier in the supplementary material provided online at https://student.dei.uc.pt/~miriams/
pdf-files/AIR_2021_Appendix.pdf
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• RBF also shows a good performance for paw and clover/flower domains,
being among the top performers [145]. MLP handles clover/flower do-
mains better than subclus domains, although the former shape is considered
more complex [98]. We hypothesise that this could be due to the fact that
clover/flower is a unified shape: the subregions are connected and have sim-
ilar densities. In turn, subclus has 5 disconnected subregions with different
densities. For MLP, learning five decision boundaries with different densi-
ties seems more difficult than to learn a single (although complex) decision
boundary with an even representation of points among subregions. For sub-
clus domains, class overlap seems to affect MLP classification performance
more than class imbalance, whereas for clover/flower, class imbalance seems
the most prejudicial [98];

Support Vector Machines and Linear Discriminants (SVM and FLD)
• SVM is more deeply affected by class overlap than class imbalance, al-

though the combination of both problems is even more costly [36]. SVM
further exhibits a breaking point occurring when nearly half of the domain
is overlapped and the imbalance ratio in the overlap region approaches a
balanced scenario [36, 58];
• In [98, 145], SVM shows a competitive performance for increasing amounts

of borderline minority examples. The good behaviour of SVM is associated
with the tuning of hyperparameters performed.
• Both linear SVM and FLD are extremely affected by the structure of data.

In particular, FLD fails to classify any minority examples for domains with
non-linear decision boundaries, although it performs reasonably well for
more simple shapes (typical square domains or cluster domains) [98]. FLD
aims to find a projection onto a line (one-dimensional space) where classes
are well separated, which for non-linear class boundaries is extremely diffi-
cult;
• Contrarily to the remaining classifiers, the increase of data dimensional-

ity does not seem to improve FLD in the classification of non-linear deci-
sion boundaries. Although the generation of overlap in higher dimensions
increases concept separability, the projections performed by FLD remain
compromised.

With respect to the top performing classifiers, note how the hyperparametrisa-
tion plays a vital role, especially with the use of Gaussian kernels. Although KNN,
SVM-RBF and RBF networks are based on different learning paradigms, by using
Gaussian kernels, SVM-RBF and RBF can approximate the local behaviour of
KNN, depending on the chosen hyperparameters. Hyperparametrisation can help
solving issues simultaneously by defining appropriate parameters depending on the
characteristics of data. As an example, different parametrisations of KNN could
be used to solve successfully domains with distribution skews for all classes, by
choosing smaller values of k in regions where a given class is sparse or less repre-
sented and larger values when a class is dense or well-represented in overlapping
regions. The same can be derived for kernel parameters.

This remains an understudied topic in imbalanced and overlapped domains and
is currently an open direction for future research. The main idea is that attending
to the bias of classifiers and the representation of class overlap in the domain, one
can establish appropriate strategies to improve classifiers individually (as is the
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case of improving parametrisation for different regions) or combining local and
global classifiers to achieve improved performance (e.g., via ensemble learning,
where the choice of individual classifiers may be tailored to the characteristics of
the data domains). Naturally, this requires a full characterisation of the overlap
problem in imbalanced domains, which to this point is not a well-established topic
in the literature, as we will further detail in the following section.

5 Limitations of Seminal Research

Despite related research provides interesting findings, as discussed throughout the
previous sections, there is still a long way to go before extrapolating insights for
real-world domains. Indeed, related research has the following limitations:

• All research works consider artificially generated data domains, where class
overlap, class imbalance, data typology, class decomposition, local data densi-
ties, and data dimensionality are defined apriori ;
• Not all aspects are studied across all research works: class decomposition and

data dimensionality are understudied. Also, authors often neglect scenarios of
extreme imbalance;
• Experiments are confined to well defined shapes (e.g., squares or clusters of

data), with little minority class decomposition (maximum of 5 subregions for
clover/flower and subclus domains), a regular majority class representation
(an integumental region, without class decomposition) and small data dimen-
sionality (most works are limited to 2-dimensional domains);

Naturally, control over these parameters allows a better understanding of the
generated domains and consequently a more precise evaluation of obtained re-
sults. Also, the insights provided over synthetic data lay the foundation for the
interpretation of results over real-world domains, and respective investigation of
specialised approaches. This was the rationale behind the thorough analysis of
previous research that culminated in the insights summarised in Sections 3 and 4.
To this regard, the conclusions derived previously are to be taken as a global view
on the peculiarities of the data domains and footprints of classifiers, showing that
the combination of class imbalance and overlap may give rise to a multitude of sce-
narios, each presenting its own implications for classification tasks in general, and
classification paradigms in particular. Nevertheless, generalisation for real-world
datasets requires further investigation and it is important to discuss some open
issues that prevent that more profound conclusions are derived:

Class overlap is not mathematically well-established:
Throughout related research, there is no standard measurement of the over-
lap degree. Hence, class overlap is measured in rather distinct ways. Prati et
al. [106] measure class overlap as the distance between cluster centroids, which
does not reveal the exact degree of overlap in each configuration. Similarly,
the research of Garćıa et al. [55, 56, 57, 58] lacks a formulation of the overlap
degree. Given the simplicity of typical domains, one may infer that the degree
of overlap can either be determined as a fraction of the area that is overlapped
over the total minority area, or over the total majority area. However, for
atypical situations, the notion of overlap degree gets rather lost (no percent-
ages or any other values are presented for the overlap degree) and the results
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need to be evaluated considering the local imbalance combined with the size
of the overlap region, instead of evaluating an exact measure of class overlap.
Furthermore, these methods of estimating class overlap do not generalise for
different data structures (e.g., non-geometrical shapes) or for a higher number
of dimensions, frequently found in real-world domains. Although it may seem
an intuitive concept, to this point there is not a well-established mathemati-
cal definition for class overlap [135]. This may be due to the fact that, as the
literature progresses, several concepts associated with class overlap have been
brought to light, leading to the discussion of distinct representations of the
problem.

Class overlap assumes different representations:
In related work, class overlap is often associated to different concepts, that
ultimately result in its characterisation according to different representations.
Class overlap is often associated to concepts such as class separability (distance
between cluster centroids [106]), overlapping regions or areas [55, 56, 57, 36],
structural biases such as distribution skews (local imbalance in overlapping
regions) [58], complex structures (class decomposition, data sparsity [101, 124,
145]), data typology (via borderline examples [101]), and the discriminative
power of features (data dimensionality [98, 145]). These representations of class
overlap are assessed differently (e.g., distance between concepts, percentage of
overlapped area, combination of local imbalance with size of overlap region,
percentage of borderline examples), which complicates the comparison of re-
sults among related work. Also, except for data typology, the used measures
for the assessment of other overlap representations are not generalisable for
real-world domains. Identifying and quantifying class overlap becomes a more
strenuous task if it has different representations. Different representations of
class overlap are associated with different insights regarding the domain and
represent different sources of degradation. However, to this point, no study in
the literature refers to this issue. What is more, studying class overlap with-
out measuring it clearly (not to mention without attending to its different
representations) may prevent meaningful insights from being derived: general
conclusions can be obtained (i.e., with respect to the overall effect of class
overlap), but it is not possible to extract more specific guidelines for future
developments in the field.

The class overlap degree does not take other factors into account:
Prati et al. [106] control class overlap as a distance between clusters centroids,
although it does not take into account the data sparsity in the overlap region,
which conditions the number of examples that effectively contribute to class
overlap. Similarly, when Garćıa et al. [58] measure class overlap as a percent-
age of overlapped area, the distribution of examples within the overlapping
area is not considered. For instance, two typical domains with different global
class imbalance may have the same overlap area, although the number of data
examples in the overlap region is different. If we were to consider atypical
domains, the issue is even more clear. Note how both a typical and atypical
situation may have the same overlap area, although they refer to two very
distinct situations in terms of class overlap and associated difficulty for classi-
fication tasks. Furthermore, recall that in related work, atypical situations do
not have an associated measure. As discussed in Section 3, the local properties
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of data are important to characterise the degradation that the class overlap
produces. To this regard, situations presenting class skews (generated by data
distribution/sparsity, or local imbalance) are important to acknowledge when
producing an overlap measure. Napierala et al. [101], Stefanowski [124, 125],
and Wojciechowski and Wilk [145] consider the local characteristics of data by
associating class overlap to the percentage of borderline minority examples in
the domain. Nevertheless, depending on how they are distributed, two domains
with the same percentage of borderline minority examples may affect the clas-
sification tasks differently. In addition, despite borderline examples are highly
related to the problem of class overlap (closer to class boundaries), other ex-
amples scattered throughout the domain may also contribute to class overlap.

Due to these limitations, we argue that the joint-effect of class overlap and
imbalance is still not fully characterised. One may argue that, since seminal work
on this topic, other approaches have been attempted to define a more accurate
characterisation of domains and its relation with classification performance. A
natural question therefore arises: “Moving past seminal work, how is the combi-
nation of class imbalance and overlap currently handled in real-world domains?”
To shed some light on this matter, the following sections elaborate on two impor-
tant aspects. One is the identification and quantification of class imbalance and
overlap, whereas the other is the devise of suitable techniques to overcome these is-
sues simultaneously (both focusing on real-world domains). We therefore provide
a comprehensive analysis of measures to characterise class imbalance and class
overlap (Section 6), and a thorough overview of the state-of-the-art class overlap-
based approaches used in imbalanced domains (Section 7). We will show that,
despite the recent developments in the field, the measures and approaches devised
for real-world domains still suffer from similar limitations as previous research on
synthetic data. This will be made clear throughout the following sections, moti-
vating our claim regarding the need to move towards a unified view of the class
overlap problem in imbalanced domains.

6 A Taxonomy of Class Overlap Measures

Throughout the years, class imbalance has been consistently estimated by consid-
ering the number of examples of each class and computing the Imbalance Ratio
(IR), such as IR = 2 or IR = 2 : 1 (Equation 1), or determining the percentage
of minority class examples in the domain (Equation 2) (note that we are focusing
on binary-classification problems for simplicity, extensions for multi-class domains
can be found in [88]). Other definitions of class imbalance can be found in [87]
(Entropy of Class Proportions), [120] (Minority Value and Class Balance), and
[98] (degIR). These measures are, however, only discussed within the respective
papers, whereas IR and Minority (%) represent the formal, well-established defi-
nitions accepted in the field [46].

IR =
|Cmaj |
|Cmin|

(1)

, where |Cmaj | and |Cmaj | represent the number of majority and minority
examples in the domain, respectively.
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Minority (%) =
|Cmin|
N

× 100 (2)

, where N represents the total number of examples in data.

On the contrary, estimating class overlap is a more complicated task, given
that it comprises several representations, as discussed in Section 3. Indeed, certain
intrinsic characteristics of data (class imbalance, local imbalance, data typology,
non-linear boundaries, class decomposition, data dimensionality) may give rise to
different facets and degrees of overlap. Before focusing on specific measures and
approaches, let us discuss some situations to clarify the idea that class overlap may
comprise different representations and that the overlap degree may be affected by
other factors, namely class imbalance. Herein we will briefly refer to some measures
of class overlap to discuss this issue, but they will be thoroughly described in the
following sections.

We start by analysing the synergetic effects of class imbalance and overlap over
the domains presented in Figure 2, previously discussed in seminal work [58] (Sec-
tion 2). Figure 2 represents two “typical situations”, where classes are uniformly
distributed over 2-dimensional squares with the same size. In these domains, the
computation of the class overlap degree was either determined as a fraction of the
area that is overlapped (Aoverlap) over the total minority area (Amin), or over
the total majority area (Amaj), since Amin = Amaj . As an example, consider
the scenario depicted in Figure 2 (left-side), where the domain presented a class

overlap of 40% [58]. This overlap percentage may be calculated as
Aoverlap
Amin

× 100

or
Aoverlap
Amaj

× 100, which corresponds to an overlap degree of 2000
5000 × 100 = 40%.

Fig. 2: Artificial domains generated according to Garćıa et al. [55]. Although the
overlap region is the same in both examples, one domain (left-side) considers an IR
of 4:1 whereas the other (right-side) has an IR of 8:1. According to the percentage
of overlapped area, both reveal the same overlap degree (40%), although due to
the imbalance ratio, the local properties of domains are rather different.
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Now, note how focusing a measure of class overlap solely on the area of the
overlap regions does not take the imbalance ratio into account. For instance, in
Figure 2 (left-side), the domain is generated for an IR of 4:1, for 500 examples:
would it be adequate to assume that the same setup for a 8:1 ratio (Figure 2, right-
side) would also produce a class overlap of 40%? Since the number of conflicting
examples in the same overlap region is lower, this may not be the case. Never-
theless, measuring class overlap as a percentage of the overlapped area remains a
common strategy used in the experimental setup of recent research [133, 135]. Note
also that determining the number of misclassified examples following a k-Nearest
Neighbour rule (another strategy to quantify class overlap, more closely related to
the concept of local data characteristics - to be discussed in Section 6.3), would
return a different overlap degree for each scenario, whereas determining the size
of overlapped area is more related to the structural properties of the data, and
unable to capture more local changes in the domain. The key idea here is to show
how class overlap may depend on other characteristics (class imbalance in this
example) and that different measures capture different representations/vortices of
class overlap.

Let us consider another example on different facets of class overlap, by exam-
ining Figure 3. The example shows two scenarios where class overlap is measured
according to the Maximum Fisher’s Discriminant Ratio, F1 (discussed in Section
6.1). In both scenarios, the data is projected onto the axis of features f1 and f2.
The projections are the same for the f1 but differ for f2. Since F1 is maximal (and
the same) in both situations, the scenarios reveal the same class overlap degree.
However, in the scenario to the right, the separability of f2 increases when com-
pared to the situation to the left. If local information is taken into account, this
domain would return a different overlap degree, since the number of misclassified
examples (1NN) is lower (misclassified examples are marked in grey in Figure 3).
Additionally, F1 does not consider class imbalance: for two datasets with different
imbalance ratios and similar statistical properties (i.e., means and variances of
each class are similar for both scenarios), F1 returns similar values. Again, this
shows that class overlap may comprise different representations and that certain
measures are able to capture some while failing to uncover others. In this case, F1
focuses on feature-level overlap, but does not consider local data characteristics
(local information).
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Fig. 3: F1 measures the highest discriminative power for all features in data,
i.e., it returns the minimum overlap of individual features found in the domain.
Accordingly, the scenarios above reveal the same discriminative power: feature
f1 has the same (and highest) F1 value in both cases. However, the individual
overlap in feature f2 is different, which makes these scenarios different in terms
of classification difficulty. F1 therefore captures one facet of class overlap (feature
overlap) but it does not provide a full characterisation of the class overlap problem
in the domain.

Now that we have established that class overlap may comprise several repre-
sentations and that some measures are able to capture some representations while
neglecting others, it is important to establish the link between existing measures
of class overlap in the literature, and the type of information (vortices of class
overlap) they are associated to.

Throughout the years, several measures have been proposed and reformulated
to identify and estimate certain properties of the data domains, referred to as data
complexity measures [66, 88, 104, 121]. The most well-known taxonomy of com-
plexity measures is the one defined by Ho and Basu [66], although throughout the
years, other authors sought to complement this taxonomy, presenting their own
division or proposing additional categories [88, 121]. Overall, these measures pro-
vide important insights regarding several properties of data and naturally, some
relate to the problem of class overlap. However, complexity measures often focus
on individual characteristics of the data, which might be insufficient to fully char-
acterise class overlap, given that it is a heterogeneous concept comprising different
sources of complexity (especially in the presence of other factors, such as class
imbalance). A first step towards a robust characterisation of class overlap would
be the definition of a taxonomy of class overlap measures that attends to its differ-
ent representations, i.e., sources of complexity. However, although class overlap is
considered one the most harmful issues for classification problems [43, 58], no such
taxonomy currently exists. In what follows, we propose a novel taxonomy of com-
plexity measures for class overlap, focusing on different vortices/representations
of the problem and the measures that are able to characterise them.

Our taxonomy of class overlap complexity measures comprises four main groups:
measures associated to Feature Overlap, Structural Overlap, Instance-Level Over-
lap and Multiresolution Overlap. Figure 4 provides an overview of the proposed
taxonomy, where each group is established depending on the representation of class
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overlap it is more suited to capture. Also, the concepts associated to each repre-
sentation are highlighted and the measures for which adaptations to imbalance
domains have been explored in the literature are identified. The following sections
thoroughly characterise each group and their respective class overlap measures.
All measures described in this section are implemented in a new Python library
named pycol - Python Class Overlap Library, publicly available on GitHub4.

Fig. 4: Taxonomy of class overlap complexity measures. Different groups can be
established depending on the representation of class overlap they are attentive to.
Measures marked with an asterisk are those for which adaptations to imbalanced
domains have been discussed in the literature.

6.1 Feature Overlap

These measures characterise the class overlap of individual features in data. Some
are deeply associated to the concept of class separability, i.e., individual feature
separability (F1, F1v) and focus on certain properties of class distributions to
determine the discriminative power of features. Others recur to feature space par-

4 https://github.com/miriamspsantos/pycol



On the joint-effect of Class Imbalance and Overlap 25

titioning to delimit overlap regions (F2, F3, F4, IN), i.e., they divide features into
certain ranges where data overlap is analysed.

6.1.1 Maximum Fisher’s Discriminant Ratio (F1)

The maximum Fisher’s discriminant ratio (F1) is perhaps the widest used measure
to compute the overlap degree of a given dataset [86, 89, 111].

For each feature fi comprised in the dataset, the Fisher’s discriminant ratio
(rfi) is obtained through Equation 3, where µ1, µ2, σ2

1 , and σ2
2 are the means

and variances of class 1 and 2, respectively. Then, F1 is obtained by finding the
maximum rfi over all features in data. As depicted in Figure 5 (to the left), F1
traditionally measures how discriminative each feature is, i.e., how well it can
separate classes. Intuitively, higher values of F1 indicate less overlapped domains.

rfi =
(µ1 − µ2)2

σ2
1 + σ2

2

(3)

In order to provide a measure of class overlap rather than class separability,
Lorena et al.[88] establish the inverse of the original F1 formulation: F1 = 1

1+r ,
where r is the maximum rfi among all features. In such a case, higher values of
F1 indicate more overlapped domains.

6.1.2 Directional Vector Maximum Fisher’s Discriminant Ratio (F1v)

Rather than determining the separability of classes on the projection of data per-
pendicular to the axes (please refer to Figure 5), F1v searches for a vector where
data can be projected with maximum separability [104]. It computes the two-
class Fisher criterion, dF , as defined in Malina [92], where higher values indicate
a higher separability between classes. Similarly to F1, Lorena et al. [88] define
F1v as follows from Equation 4, where lower values indicate that there is a vector
capable of separating classes after projecting data onto it. In other words, higher
values of F1v indicate higher amounts of class overlap.

F1v =
1

1 + dF
(4)

6.1.3 Volume of Overlapping Region (F2)

To determine F2, the overlap of the distribution of feature values is computed
individually for each feature (fi = 1, . . . ,m). First, the maximum and minimum
values of each feature fi are found, considering both classes C1 and C2. Then, the
overlap length of feature values is determined and normalised by the overall range
of the feature. Finally, F2 is determined by multiplying the ratio obtained for
each feature (Equation 5), where higher values indicate a greater amount of class
overlap. An example of the determination of F2 is depicted on Figure 5 (rightside).

F2 =
m∏
i=1

overlap(fi)

range(fi)
=

m∏
i=1

max{0, minmax(fi)−maxmin(fi)}
maxmax(fi)−minmin(fi)

, where (5)
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minmax(fi) = MIN
(
max(fi, c1),max(fi, c2)

)
,

maxmin(fi) = MAX
(
min(fi, c1),min(fi, c2)

)
,

maxmax(fi) = MAX
(
max(fi, c1),max(fi, c2)

)
,

minmin(fi) = MIN
(
min(fi, c1),min(fi, c2)

)
.

Fig. 5: Representations of F1 (leftside) and F2 (rightside) measures for the same
dataset. Note how F1 projects data onto the axis to establish the amount of
overlap, where f1 is the feature with highest discriminative power, i.e., lowest
overlap. In turn, F2 considers both features to define a region where classes coexist.

6.1.4 Maximum Individual Feature Efficiency (F3)

Traditionally, F3 measures the discriminative power of individual features by de-
termining the efficiency of each feature and returning the maximum value [66].
For each feature, F3 determines the regions where there are values from both
classes and then returns the ratio of feature values that are not in the overlap-
ping regions. In Lorena et al. [88], a complementary measure is presented, where
F3 measures the minimum amount of overlap between feature values of different
classes (Equation 6). Thus, higher values of F3 indicate more overlapped domains
(Figure 6).

F3 = min
(noverlap(fi)

n

)
(6)

, where i = 1, . . . ,m features and n is the total number of examples in data.

noverlap(fi) = |{xj ∈ fi : xj > maxmin(fi) ∧ xj < minmax(fi)}| (7)
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Fig. 6: Representation of F3 measure for the data domain of Figure 5. Feature
efficiency is measured individually for f1 (leftside) and f2 (rightside), where f1 is
the most efficient feature, i.e., it returns the minimum amount of overlap. Adapted
from [88].

6.1.5 Collective Feature Efficiency (F4)

Whereas F3 focuses on individual feature efficiency, F4 considers the discriminative
power of all features [104]. To find F4, the following procedure is applied: first,
the feature with highest discriminative power (lowest overlap) according to F3 is
taken and all examples that can be separated using this feature are removed from
the data. Then, the next most discriminative feature (considering the remaining
examples) is taken and the process is repeated iteratively over all features. In
the end, according to the original formulation [104], F4 returns the proportion of
examples that have been discriminated, thus providing an idea on the proportion
of examples that could be correctly separated by hyperplanes parallel to one of
the axis of the feature space. Lorena et al. [88], however, consider F4 as the ratio
of examples that could not have been separated (Figure 7). Thus, higher values
of F4 indicate a larger amount of overlap between classes, considering all features
collectively. F4 may be determined by Equation 8, where fl represents the last
most discriminative feature found through the iterative process described above
and n is the total number of examples in data.

F4 =
noverlap(fl)

n
(8)
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Fig. 7: Representation of F4 measure for the data domain of Figure 5. Since f1
is the most efficient feature, all examples that can be separated according to f1
(outside the grey area) are removed. Then, the same is performed on f2. The
remaining data examples are those who could not be separated, thus contributing
to class overlap. Adapted from [88].

6.1.6 Input Noise (IN)

The Input Noise (IN) is related to the amount of overlap between features of
different classes [136]. To determine the input noise, the maximum and minimum
values of each feature for each class are used to define their boundaries. Then,
if a given example falls inside the boundaries of another’s class feature values, it
is contributing to the overlap on this feature. To this regard, the input noise is
related to F2 and F3 measures. However, the input noise measure then determines,
for each example, in how many dimensions (features) it overlaps and normalises
the total by n×D, where n is the number of examples in data and D is the number
of existing dimensions (Equation 9). Higher values of IN indicate higher amounts
of class overlap. In Equation 9, gi represents the number of features where the ith

example is in overlapping regions.

IN =
1

n ·D

n∑
i=1

gi (9)

6.2 Structural Overlap

This group of measures is associated with the concept of class complexity (non-
linear boundaries and class decomposition), comprising information on the internal
structure of classes (data morphology). They can be used to characterise class
overlap regions using a “divide-and-conquer” perspective, i.e., focusing on the
structure of the domain to find problematic regions. Some measures analyse the
properties of a Minimum Spanning Tree (MST) built over the data domain to
produce measures of decision boundary complexity and structural overlap (N1).
Others approach the identification of class overlap using the notion of hypersphere
coverage (T1, Clst, ONB, LSCAvg). Some consider both MST and hypersphere
coverage (DBC). Finally, also linked to the concept of data morphology, other
measures aim to quantify the data sparsity/density of manifolds (N2, NSG, ICSV).
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6.2.1 Fraction of Borderline Points (N1)

N1 measures the proportion of examples that are connected to the opposite class by
an edge in a Minimum Spanning Tree (MST) [66]. Most often, these examples are
those located near the boundary between classes, or those inserted in overlapped
regions in the data space. In general, higher values of N1 indicate a higher degree
of class overlap (classes are more deeply intertwined) [88, 105]. However, there are
situations where N1 may assume higher values for simpler domains, e.g., if the class
boundary has a narrower margin than the intra-class distances [111]. Considering
V and E as the set of vertices and edges of a MST (V,E), N1 can be defined by
Equation 10, where yi is the class label of a given example xi.

N1 =
1

|V | |{xi ∈ V : ∃(xi, xj) ∈ E ∧ yi 6= yj}| (10)

Fig. 8: A representation of the N1 measure. Marked points from both classes are
those contributing to class overlap (connected to the opposite class in the MST).
Adapted from [88].

6.2.2 Fraction of Hyperspheres Covering Data (T1)

To determine T1, a hypersphere centred at each example of the dataset is created
and its radius is grown until it reaches an example of the opposite class. Then,
hyperspheres contained in larger ones (of the same class) are eliminated (Figure 9).
T1 is then defined as the ratio of hyperspheres that remain, as shown in Equation
11, where n represents the total number of examples in data.

T1 =
#Hyperspheres

n
(11)
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Fig. 9: Representation of the original T1 solution for two datasets (top and bottom
rows). In the scenario depicted in the top row, the hyperspheres of points D and
A are not completely absorbed by any other hypersphere in the domain. On the
contrary, in the scenario of the bottom row, hypersphere D and A are absorbed
by hyperspheres C and B, respectively, and are therefore eliminated.

Lorena et al. [88] consider an alternative implementation of T1, where the
growth of a hypersphere is stopped when it starts to touch a hypersphere of the
opposite class. Accordingly, this modification starts by determining the existing
mutual nearest enemies in data, for which their radii are automatically established
as half of the distance between them. The radius of the remaining hyperspheres
are then determined recursively (Figure 10).

Given that the hyperspheres only contain examples of the same class, higher
values of T1 indicate a larger amount of class overlap. Nevertheless, this measure
is also sensitive to the distribution of data in the domain, i.e., covering situations
where the domain is composed by different clusters of the majority and minority
classes (even if there is no class overlap), will require a higher number of hyper-
spheres [88].
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Fig. 10: Alternative T1 implementation [88] for the scenarios depicted in Figure
9. The modification starts by finding which data points are each other’s nearest
neighbours of opposite classes (i.e., nearest enemies): D and F in the scenario
of the top row, and both D and F and A and G in the bottom row. The radii
of their hyperspheres are automatically defined as half of the distance between
them. Then, for each remaining data point, its radius is defined as the distance
to its nearest enemy minus the radius of the nearest enemy itself. Considering the
scenario in the top row, the radius of hypersphere C corresponds to its distance
to F (its nearest enemy), minus the radius of F itself. Accordingly, the radius of
E is determined by considering its distance to C, and so forth.

6.2.3 Local Set Average Cardinality (LSCAvg)

The Local Set (LS) of a given data example xi is the set of examples whose distance
to xi is smaller than the distance of xi to its nearest neighbour of the opposite
class, NNio [82]. An example of a LS is depicted in Figure 11. Considering U as
the set of all examples in the data space, the LS of a given example xi can be
defined as:

LS(xi) = {xj ∈ U : d(xi, xj) < d(xi, NNio)} (12)
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Fig. 11: The concept of Local Set, LS. Considering xi as point A, its nearest
neighbour of the opposite class NNio (nearest enemy) is point B. Thus, the LS
of point A is the set of examples whose distance to A is smaller than d(A,B),
included in the dotted circle. The local set cardinality of A is therefore 4, i.e.,
|LS(A)| = 4. Adapted from [82].

To determine the Local Set Average Cardinality (LSCAvg) of a dataset, the
number of points included in each example’s LS is aggregated according to Equa-
tion 13. Examples with a small number of points in their LS are either examples
located near narrow decision borders, or examples located in regions populated
by the opposite class (overlapping regions). A smaller number of points in each
example’s LS leads to lower values of LSCAvg, which represent more overlapped
and complex domains.

LSCAvg =
1

n2

n∑
i=1

|LS(xi)| (13)

, where n represents the total number of examples in data.

6.2.4 Number of Clusters (Clst)

The Number of Clusters (Clst), similarly to T1, determines the number of clusters
of the same class that cover the data domain [82]. The proposed algorithm in [82]
starts by considering the data examples with higher LS cardinality as cluster cores.
Then, for each remaining example, the algorithm checks if they belong to the LS of
a cluster core. If so, the example is included in the existing cluster; otherwise, a new
cluster core is created, and the process is repeated, always prioritising cores with
the highest LS cardinality. An example of the clustering procedure is depicted
in Figure 12. After all examples are assigned to clusters, the total number of
existing clusters is determined and Clst defined by Equation 14, where n is the
total number of examples in data.
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Fig. 12: Local Set-based clustering. The first identified cores are E and G, in any
order, since they have the largest LS (|LS(E)| = |LS(G)| = 3). Then, points A
and C are chosen as cores since they both have a LS of 2. The remaining examples
do not become cores, since they are already comprised in the local sets of other
cores. Finally, although D is both contained in the LS of E and C, it belongs to
the cluster with core E, since E has a higher LS cardinality. Adapted from [82].

Clst =
#Clusters

n
(14)

A note worth considering is that, in the original formulation, LSCAvg and
Clst mainly focus on characterising class borders (determining how narrow and/or
irregular they are). For this reason, overlapping and noisy examples are considered
atypical and removed from the dataset (using the ENN algorithm [144]) prior to
the computation of the LSC cardinality of each example. Nevertheless, both types
of examples (located near the class borders, or in overlapping regions) contribute to
class overlap, and both LSCAvg and Clst can be used to characterise it. Figures 13
and 14 provide an comparison between a solution that does not remove overlapping
points and one that does (as originally formulated).

Fig. 13: A representation of the Clst solution for a given dataset, considering all
points. The LS of each data example is determined and starting with the examples
with largest LS, the clusters are built by iteratively finding candidate cluster cores.
In this solution, all existing points are kept and the final number of clusters reflects
the amount of class overlap in the domain: 15 clusters for 23 data points.
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Fig. 14: A representation of the Clst solution for the dataset in Figure 13, removing
overlapped and noisy points. In this scenario, prior to the LS computation, the
noisy and overlapped points are removed according to the ENN rule, returning a
solution of 3 clusters for 13 data points. It seems, however, that removing data
points alters the true complexity of the original data domain.

6.2.5 Overlap Number of Balls (ONB)

The Overlap Number of Balls (ONB) is based on the same rationale as T1 [105].
The idea is to determine how many balls containing only examples of the same
class are needed to cover the entire data space. ONB uses the Pure Class Cover
Catch Digraph [94] to determine the maximum radii for all examples in data
(the radius of a ball is increased until it touches an example from the opposite
class). Then, for each example, the ball that includes the largest number of same-
class examples is chosen, until all examples are covered. After the final number of
balls is defined, two measures can be determined: ONBtot and ONBavg. ONBtot
represents the ratio between the number of balls necessary to cover the domain
and the number of examples in data, n (Equation 15). ONBavg determines the
average ONB, considering the number of balls necessary to cover each class C
(Equation 16).

ONBtot =
Number of Balls

n
(15)

ONBavg =
1

C
·
C∑
c=1

ballsc
nc

(16)
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Fig. 15: A representation of the ONB solution for the dataset in Figures 9 and 10
(top-row). First, a ball is centred at each data point and grown until it touches a
point from the opposite class. Then, the balls containing a larger number of points
are iteratively chosen. Adapted from [105].

6.2.6 Decision Boundary Complexity (DBC)

The Decision Boundary Complexity (DBC) is an extension of T1 which determines
the interleaving of hyperspheres of different classes [137]. After the hyperspheres
from T1 are found, a Minimum Spanning Tree (MST) is constructed using the
centres of the hyperspheres. Then, the number of connected centres of different
classes (Ninter) is determined and DBC is computed as follows:

DBC =
Ninter

#Hyperspheres
(17)

Fig. 16: A representation of the DBC measure. In the MST, there are 8 centres
connected to centres of a different class (Ninter = 8).

6.2.7 Ratio of Intra/Extra Class Nearest Neighbour Distance (N2)

N2 compares the within-class and between-class spread, i.e., it represents a trade-
off between intra-class distances and inter-class distances [66]. The distance be-
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tween each data example and its nearest neighbour of the same class, d(xi, NNis),
as well as between its nearest neighbour from the opposite class, d(xi, NNio), are
computed. Then, the sum of all intra and inter-class distances are aggregated to
produce a intra/inter class ratio (r) and N2 can be determined according to Equa-
tion 18, where n represents the total number of examples in data. Higher values
of N2 indicate more overlapped domains [111].

N2 =
r

1 + r
, where r =

∑n
i=1 d(xi, NNis)∑n
i=1 d(xi, NNio)

(18)

Fig. 17: A representation of intra-distances and inter-distances for N2 computation.
Less overlapped domains generally present more compact concepts (lower intra-
distances average) that are well-separated (higher inter-distances average), thus
returning lower values of N2.

6.2.8 Number of samples per group (NSG)

This measure provides an indication of the average size of groups that exist in data
by determining the average number of examples in each hypersphere found by T1
(Equation 19) [136]. Ni represents the number of examples inside hypersphere i.

NSG =
1

#Hyperspheres

#Hyperspheres∑
i=1

Ni (19)

In such a way, NSG (as all density measures in general) adds local information
to structural overlap measures. A large number of hyperspheres comprising a small
number of examples is indicative of a more intertwined data domain.

6.2.9 Inter-Class Scale Variation (ICSV)

The inter-class scale variation measures the standard deviation of hyperspheres’
densities [136]. First, the density ρ of each hypersphere found according to T1
is determined, where Nsphere and Vsphere represent the number of examples in
a hypersphere and its volume, respectively. Then, the standard deviation of the
sphere densities (ICSV) is found, as follows from Equation 20. nH represents the
number of hyperspheres (#Hyperspheres) and µρ represents the average density
of hyperspheres. Higher ICSV values are associated with changes in the local data
densities of the domain, thus indicating more complex scenarios.
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ICSV =

√√√√ 1

nH

nH∑
i=1

(ρi − µρ)2, where ρ =
Nsphere
Vsphere

and µρ =
1

nH

nH∑
i=1

ρi (20)

6.3 Instance-Level Overlap

These measures are able to analyse the domains at a local level, where class overlap
is commonly associated to the error of the k-nearest neighbour classifier. While
some measures provide an overall value for the entire domain (R-value, Raug,
degOver, N3, SI, N4), others are particularly related to the identification of local
data characteristics, i.e., data typology or instance hardness (kDN, D3, Border-
line Examples, IPoints). They provide local information on the complexity of the
domain by identifying problematic examples in data, frequently those near the
class boundaries (associated with class overlap). Although some of these measures
evaluate data examples individually according to their characteristics, they can
then adapted in order to produce an estimate for the entire domain.

6.3.1 R-value and Augmented R-value

The R-value defines the degree of overlap between two classes Ci and Cj by deter-
mining the number of points of each class that fall onto overlap regions between
classes [103]. For each mth instance of class Ci (represented as pim), the exam-
ples in its k-neighbourhood that belong to Cj , represented by kNN(pim, Cj), are
found (Figure 18). Then, pim is assigned as belonging to an overlapping or non-
overlapping region, as follows from Equation 21. |Ci| represents the number of
examples of class Ci, whereas θ is a threshold used to define whether pim is inside
an overlap region or not. λ is a binary function that represents such decision, i.e.,
λ(a) = 1 if a > 0; otherwise λ(a) = 0. In other words, if we consider θ = 2,
it means that 2 is the maximum number of points from the opposite class that
we tolerate in the k-vicinity of pim. If there are more than 2 points, then pim is
considered an overlapping point. The same is performed for class Cj and the final
results are aggregated as follows from Equation 22.

r(Ci, Cj) =

|Ci|∑
m=1

λ
(
|kNN(pim, Cj)| − θ

)
(21)

R(Ci, Cj) =
r(Ci, Cj) + r(Cj , Ci)

|Ci|+ |Cj |
(22)

R-values range from 0 (no overlap) to 1 (complete overlap), taking into account
all examples in the data domain, whether they are from the majority or minority
classes.
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Fig. 18: Basic concepts for R-value computation. Note how |kNN(pi1, Cj)| = 0 and
|kNN(pi2, Cj)| = 4, for k = 6. Adapted from [103].

The Augmented R-value (Raug) is an extension of the R-value that takes into
account the imbalance ratio of the data domain [14] (Equation 23), where R(Cmin)
and R(Cmaj) may be calculated as an arbitrary R(Ci) according to Equation 24.

Raug(Cmin, Cmaj) =
1

IR + 1

(
R(Cmaj) + IR ·R(Cmin)

)
(23)

R(Ci) =
1

|Ci|

|Ci|∑
m=1

λ
(
|kNN(pim, Cj)| − θ

)
(24)

This extension is based on the rationale that, for binary classification, the
contribution of the majority class overlap to the overall overlap should not be
directly proportional to the number of majority examples, given that most of
them are frequently non-overlapping examples [14]. For IR = 1, Raug is equivalent
to the R-value (Equation 22), whereas as the IR increases, Raug becomes closer
to the R-value of the minority class (Equation 24, assuming Ci as Cmin).

6.3.2 degOver

Similarly to what was described in the previous section, degOver determines the
degree of overlap by finding overlapping and non-overlapping examples in a k-
neighbourhood (k = 5) [98]. For a given example, if all its 5-nearest neighbours
are from the same class, then the example belongs to a non-overlapping region
(Figure 19). Otherwise, it is considered an overlapping example. Then, the number
of overlapping examples (of both classes), i.e., nminover and nmajover is divided by
the total of examples in the data space, n (Equation 25). Higher values of degOver
represent more overlapped domains.

degOver =
(nminover + nmajover )

n
(25)
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Fig. 19: A representation of degOver. Marked points from both classes are those
that contribute to class overlap (located in overlapped regions).

6.3.3 Error Rate of the Nearest Neighbour Classifier (N3)

N3 measures the error rate of the Nearest Neighbour classifier (1NN), estimated
using a Leave-One-Out (LOO) cross-validation. Higher N3 values are associated
with a higher overlap degree between classes [66]. Considering U as the set of all
examples in the data space, N3 can be defined according to Equation 26, where
yi represents the class of example xi, and yNNi represents the class of its nearest
neighbour, NNi.

N3 =
1

|U | |{xi ∈ U : yi 6= yNNi}| (26)

6.3.4 Separability Index (SI)

Thornton’s Separability Index (SI) determines the proportion of points whose class
is the same as of its nearest neighbour [60, 129]. Considering a given example xi
and its nearest neighbour NNi, SI is defined by Equation 27. In such a way, SI
measures class overlap by informing on the separability of the data domain, being
the complementary measure of N3, where higher values indicate that there is a
large amount of data points whose nearest neighbour is of the opposite class.

SI =
1

|U | |{xi ∈ U : yi = yNNi}| (27)

6.3.5 Non-Linearity of the Nearest Neighbour Classifier (N4)

To compute N4, new synthetic examples x̂i are generated by interpolating pairs of
data examples from the same class, chosen randomly. Then, the error rate of the
Nearest Neighbour classifier is estimated solely over the set of the new examples
obtained by linear interpolation, I. For each new example, its closest neighbour of
the original data space NNiU is determined, and their class labels are compared
in order to produce N4 (Equation 28). By determining the 1NN error on these new
points, N4 establishes the overlap that exists between the convex hulls that delimit
the classes [88]. Higher values of N4 represent more deeply overlapped domains.

N4 =
1

|I| |{x̂i ∈ I : ŷi 6= yNNiU }| (28)
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Fig. 20: A representation of N4 computation. New synthetic points (in grey) are
generated by linearly interpolating random examples of the same class (connected
by dotted lines). Then, the 1NN error is measured over the new points: marked
points are those whose 1NN classification produces an error, thus identifying class
overlap. Adapted from [88].

6.3.6 K-Disagreeing Neighbours (kDN)

Considering an example xi, k-Disagreeing Neighbours (kDN) measures the per-
centage of its k nearest neighbours xv that do not share its class [120]:

kDN(xi) =
|{xv ∈ kNNi : yv 6= yi}|

k
(29)

In such a way, kDN measures the local overlap of a given data example, where
values closer to 0 indicate that xi is inside a safe region (all neighbours share its
class label), whereas higher values indicate increasing amounts of data examples
from the opposite class in its neighbourhood. A global measure for the entire
domain could be achieved by averaging kDN over all examples in data, n:

kDNavg =
1

n

n∑
i=1

kDN(xi) (30)

6.3.7 Class Density in the Overlap Region (D3)

D3 aims to describe the density of each class in the overlap regions by determining,
for each class, the number of examples that lie in regions populated by a different
class [122]. For each example xi, its k-nearest neighbours are found and if the
majority belongs to a class different from xi, then xi is considered to be in an
overlapping region. The number of examples that lie inside overlapping regions
is then retrieved for each class Cj . Considering U as the set of all examples in
the data space and kNNi as the set of the k-nearest neighbours of xi, D3 can be
defined according to Equation 31, where higher values for a given class correspond
to regions populated by another class. yi and yv are the class labels of xi and xv,
respectively, and ∆xi establishes the proportion of nearest neighbours of xi that
share its class.
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D3Cj = |{xi ∈ U : ∆(xi) < 0.5}| (31)

∆xi =
|{xv ∈ kNNi : yv = yi}|

k
(32)

6.3.8 Complexity Metric Based on k-nearest neighbours (CM)

CM also focuses on the local neighbourhood of each example to decide on its
difficulty for classification [4]. The k nearest neighbours of each example xi are
found (where k is odd), and if the majority of neighbours is of the same class as
xi, the example is considered easy; otherwise it is considered difficult. CM then
measures the proportion of difficult examples in data, as defined in Equation 33,
where kDN(xi) has been previously described (Equation 29) and n is the total
number of examples in data. CM is therefore intrinsically related to kDN and
somewhat the aggregation of D3 over the entire domain. Recent extensions of CM
include wCM (Weighted Complexity Metric), and dwCM (Dual Weighted Com-
plexity Metric) [116], that use a weighted kNN approach rather than a standard
kNN classifier.

CM =
|{xi : kDN(xi) > 0.5}|

n
(33)

6.3.9 Borderline Examples

As discussed in Section 3, the presence of borderline examples is closely related
to the problem of class overlap since higher percentages of this type of examples
complicate the decision boundary between classes. A popular data typology di-
vides data examples into 4 categories [100, 101, 124, 145], according to their local
neighbourhood (typically k = 5), as follows:

• Safe examples have 0 or 1 neighbours of the opposite class;
• Borderline examples have 2 or 3 neighbours of the opposite class;
• Rare examples have 4 neighbours of the opposite class. Additionally, the only

neighbour of the same class should be either an outlier example, or a rare
example as well;
• Outlier examples have all 5 neighbours of the opposite class.

A representation of each type of example is presented in Figure 21. Most often,
the data typology is used in scenarios comprising class imbalance [100, 101, 124,
145], and therefore is often solely applied to the minority class. However, it can
be applied to all existing classes. In such a case, the number of borderline exam-
ples from all classes (nborderline) is determined according to the rules described
above and divided by the total number of examples in data (n), thus defining
the degree of overlap as a percentage (Equation 34). This would be reminiscent
of R-value, degOver, and CM, although it considers solely one type of difficult
examples (borderline examples), as they relate the most to the concept of class
overlap.

Overlap (%) =
nborderline

n
× 100 (34)
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Fig. 21: A representation of different example types: A is a safe example, sur-
rounded by neighbours of its class; B is an outlier example, isolated in an area of
the opposite class; C and D are rare examples and finally, E and F are borderline
examples, located near the decision border between classes.

6.3.10 Number of Invasive Points (IPoints)

When data examples are clustered according to the their local sets (LS), some
resulting clusters may contain only one instance. This may represent a situation
where two cluster cores share some examples in their local sets, except than one of
the cores has a larger local set cardinality [82]. An example of such situation has
previously been discussed in Figure 12, where cores E and C share point D, but
D belongs to the cluster with core E, since E has a higher LS cardinality. Then,
point C will produce a separate cluster of only one point (itself). If a given cluster
has only one point (the core) and its local set contains only the point itself, then
it is called an “invasive point”. Note that in Figure 12, point C is not an invasive
point because, although it will produce a cluster of only itself, its local set contains
C and D, i.e., LS(C) = {C,D}. An example of an invasive point is given in Figure
22.

Fig. 22: A representation of an invasive point. Note that K is an invasive point since
it produces a cluster of only itself, has no other points in its local set and is not
included in the local set of any other point, including its closest neighbours, J and
L. In turn, J and L are not invasive points because despite their local sets contain
only themselves, they do not produce singular clusters, as they are included in
other points’ local sets (other clusters). Adapted from [82].
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Invasive points are therefore border examples that somewhat infiltrate the
opposite class, or examples located in overlapping regions of the data space. The
number of these type of points normalised by the total number of points (n)
characterises the complexity of the domain, where a large number of invasive
points indicates more intertwined domains (Equation 35).

IPoints =
#Invasive Points

n
(35)

6.4 Multiresolution Overlap

This group of measures uses multiresolution approaches to identify regions of dif-
ferent complexity within the domains. Some are more closely related to the pre-
vious ideas of using hyperspheres (MRCA) or k-neighbourhoods (C1 and C2) to
define regions of the space where class overlap can be analysed. Others are asso-
ciated with feature space partitioning, where features are divided into a specific
number of intervals where the properties of class overlap may be assessed (Purity
and Neighbourhood Separability). Nevertheless, the main idea than binds these
measures together is that they operate recursively (fine-grain search), i.e., defining
hyperspheres, neighbourhoods, or feature partitions at different resolutions, all of
which are individually analysed. This allows to combine both local and structural
information, characterising the data domains from the perspective of recursive data
subspaces. Class overlap is therefore determined at several resolutions, providing
a trade-off between global and local data characteristics.

6.4.1 Multiresolution Complexity Analysis (MRCA)

Multiresolution Complexity Analysis (MRCA) aims to identify regions of different
complexity in the data domain [5]. Each data example is attributed a profile space,
which is then used for clustering and complexity analysis. To generate a profile
space for a given data example, hyperspheres of different radii are drawn around it.
The content of each hypersphere is then analysed through the use of an imbalance
estimation function which, given a set of examples D, is defined as follows:

ψD(x, σ) = y(x) · N
+
σ (x)−N−σ (x)

N+
σ (x) +N−σ (x)

(36)

The data example x and parameter σ are the centre and radius of the hy-
persphere, respectively, and N+

σ (x) and N−σ (x) are the number of data examples
of the positive and negative class inside the hypersphere. y(x) gives the class of
x, herein assuming two possible values {-1,1}. ψ therefore ranges between [-1,1],
where -1 and 1 indicate a strong imbalance inside the hypersphere, with most of
the data examples being from the opposite class of x (-1), or mostly equal to x (1).
ψ = 0 characterises situations where both classes are equally represented inside
the hypersphere.

A profile pattern of x can be obtained by considering different radii σ in the
generation of the hyperspheres. Considering a set of m hyperspheres, a profile p
is given by:
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p = [ψ(x, σ1), ψ(x, σ2), . . . , ψ(x, σm)] (37)

After all data examples have been assigned their profile patterns, a set of
profile patterns ∆ is obtained, which can then be clustered to determine regions
of different complexity, via k-means clustering [5]. Then, to define the pattern
and cluster complexity, a Multiresolution Index (MRI) can be computed for each
pattern p:

MRI(p) =
1

2m
·
m∑
j=1

wj · (1− pj), (38)

where wj = 1− j−1
m , giving higher weights to components with finer granularity.

The complexity of a kth cluster is then determined by averaging the complexity
of patterns p that belong to it.

MRI(k) =
1

|∆(k)|
·
∑

p∈∆(k)

MRI(p) (39)

Lower values of MRI(k) characterise clusters comprising patterns p with most
ψD(x, σ) ≈ 1, which represent patterns x belonging to less complex regions. In
turn, higher values of MRI(k) indicate clusters comprising patterns p with most
ψD(x, σ) ≈ −1, representing patterns x in more complex regions. Balanced clusters
indicate medium complexity regions, with MRI(k) = 1

2 .

Fig. 23: A representation of MRCA. The profile of data example x is defined using
3 hyperspheres of radius σ1, σ2 and σ3, for which ψ(x, σ) is computed, respectively.
Thus, a profile pattern p is constructed as p = [1, 0, 0.33], with a MRI(p) of 0.15.
After all data examples have been profiled, a new data space of profile patterns
∆ is constructed and clustered, where each pattern p is included in clusters of
different complexity. Data example x was mapped to a pattern p that belongs
to the blue cluster. In such a way, it is possible to find patterns p of different
difficulty by analysing the cluster solution, which in turn correspond to difficult
data examples x in the original data space. Note that patterns p included in the
same cluster do not necessarily correspond to nearby examples in the original data
space since clusters are built based on the difficulty of data examples, not their
distance to each other.
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6.4.2 Case Base Complexity Profile (C1)

Similarly to MRCA, C1 measures the local complexity of a data domain by focusing
on the spatial distribution of data examples [95]. The complexity of each data
example is determined based on the class distribution within its k-neighbourhood,
for increasing values of k. For each k value and data example xj , the proportion
of examples that share the same class as xj is determined (pkj) and a nearest
neighbour profile can be determined by plotting pkj as a function of k (Figure 24).

For a given chosen K, the complexity of xj is given by Equation 40, where
neighbours closer to xj have a higher influence on the complexity since they are
used to compute several values of pkj [31].

Complexity(xj) = 1− 1

K

K∑
k=1

pkj (40)

To provide an overall complexity value for the entire data domain, the com-
plexity of all points may be averaged according to Equation 41, where n is the
total number of data examples.

C1 =
1

n

n∑
j=1

Complexity(xj) (41)

Fig. 24: A representation of C1. A complexity profile can be determined for xj by
analysing the characteristics of its neighbourhood for different values of k. With
k = 3, the complexity of xj is 1− 1

3 (1 + 0.5 + 0.67) ≈ 0.28. Adapted from [95].

6.4.3 Similarity-Weighted Case Base Complexity Profile (C2)

C2 is a modification of C1 that associates the weight of each neighbour to their
distance to xj , so that closer neighbours have a higher impact in complexity com-
putation [31]. In C2, pkj is given as the average similarity between xj and the
k-neighbours that share its class. The overall complexity C2 is given by the same
Equations 40 and 41, yet considering the modifications to pkj .
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6.4.4 Purity and Neighbourhood Separability

Another type of multiresolution analysis is feature space partitioning. Feature
Space Partitioning measures work by recursively partitioning the data space into
hypercuboids (cells) at several resolutions, where each resolution is defined by the
number of partitions per feature [117, 118]. As the resolution increases, the data
space is composed by a larger number of cells and each cell includes a smaller num-
ber of data examples. Based on this partitioning scheme, two complexity measures
called Purity and Neighbourhood Separability may be defined. The former relates
to how pure are the defined cells, considering the number of representatives of
each class comprised inside each cell. The latter finds, for each example in a cell,
the proportion of nearest neighbours that share its class.

For both measures, the data space is divided at different resolutions from B = 0
(no partitioning) to B = 31 (up to 32 cells per axis), where data examples are
assigned to their closest cell (Figure 25). Then, the following strategy is applied:

• At each resolution B, the complexity (purity or neighbourhood separability) is
measured individually for each cell;

• The estimates of each cell are linearly weighted to produce an estimate for that
resolution, where the weight given to the estimate of each cell is proportional
to the number of examples it contains (nln ), where nl is the number of examples
in the cell and n represents the total number of examples in data;

• The complexity across all cells at a given resolution is also exponentially
weighted by a factor of w = 1

2B
, where larger weights are given to lower reso-

lutions;
• Finally, a curve of complexity versus resolution is plotted and the area under

the curve (AUC) defines the overall complexity of the data, bounded within
the [0,1] interval.

Fig. 25: A representation of the feature partitioning scheme for B = 2, B = 3
and B = 9, from left to right, respectively. Higher resolutions provide more local
information regarding the domain. At each resolution B, the domain complexity
(purity or neighbourhood separability) is determined, where each cell is individ-
ually analysed. The final complexity measures are determined by averaging the
individual results of all cells. Cells marked in grey are those shared by examples
of different classes, identifying overlapping regions.
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In what follows, we explain how purity and neighbourhood separability are
computed. Detailed algorithms of both measures, as well as the feature partitioning
scheme, are available in [118].

Purity

Purity measure determines how pure the defined cells are, focusing on class
representation inside each cell. If all data examples are from the same class, the
cell is completely pure; otherwise, the purity of each cell depends on the number of
representatives of each class comprised inside it. In the worst case, if a cell contains
the same number of examples for each class, its purity is zero.

Considering a total of Kl classes in cell Hl, and considering that the number
of examples of class Ci in cell Hl is given by λil, the purity of a cell is defined as:

SHl =

√√√√( Kl
Kl − 1

) Kl∑
i=1

(
pil −

1

Kl

)2
(42)

where pil is the probability of class Ci in Hl, given by:

pil =
λil∑Kl
i=1 λil

(43)

The estimates SHl of each cell are then linearly weighted and summed to
produce an average purity SH , given by:

SH =
H∑
l=1

SHl ·
nl
n

(44)

where H is the total number of cells. A previously detailed, SH is further
weighted by 1

2B
before plotting the purity values versus resolution. The overall

purity measure, i.e., the AUC of purity values across all cells (SH) versus the
respective resolution (B), is bounded within the range [0,1] where higher val-
ues represent less overlapped domains. For less overlapped domains, the purity
is expected to increase as the number of cells increases with higher resolutions.
However, if the domain is extremely overlapped, the purity will be low despite the
increase of the number of cells, therefore returning a lower average purity value.
Additionally, for less overlapped domains, the measure will increase rapidly as the
resolution increases, contrary to data with significant class overlap.

Neighbourhood Separability
This measure is more sensitive to the shape of decision boundaries and determines,
for each data example in a cell, its proportion of k-nearest neighbours from the
same class (for varying values of k). For each data example xj in cell Hl, its k-
nearest neighbours are found based on the Euclidean distance and the proportion
of neighbours from the same class as xj is determined as pkj . This procedure is
repeated for several values of k, from 1 to a maximum value of λil, in steps of 1
(recall that λil is the number of examples of class Ci inside cell Hl). Thus, for
each data example xj inside cell Hl, it is possible to plot a curve of pkj versus k
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and determine the area under the curve as φj . Then, the average neighbourhood
separability of cell Hl can be determined as:

pl =
1

nl

nl∑
j=1

φj (45)

The neighbourhood separability across all cells is computed by a weighted sum
of the pl values of all cells (Equation 46) and then weighted by 1

2B
to account for

the data space resolution.

SNN =
H∑
l=1

pl ·
nl
n

(46)

Similarly to Purity, a final curve of SNN values versus resolution is plotted and
the area under the curve is the overall neighbourhood separability measure for a
given domain, where higher values represent less overlapped domains.

6.5 Summarizing Comments

Throughout this section we discuss the idea that class overlap is a heterogeneous
problem with different representations. To standardise existing vortices of class
overlap, we propose a novel taxonomy that associates common concepts found in
related research to four groups of class overlap complexity measures (Figure 4):
Feature Overlap, Structural Overlap, Instance-Level Overlap, and Multiresolution
Overlap. We show how each group measures a particular facet of class overlap and
describe their representative measures in detail, which is a step towards providing
a more complete characterisation of class overlap in real-world domains. However,
there are two topics left for discussion. One is if (and how) these measures of class
overlap are attentive to class imbalance as well. The other regards the development
of new measures that simultaneously account for several representations of class
overlap. Let us start by discussing the existing body of knowledge regarding the
sensitivity of class overlap measures to class imbalance.

As highlighted in Figure 4, there are some measures for which adaptations to
imbalanced domains are discussed in the literature. Some were originally devel-
oped in the scope of imbalanced data (Raug, ONB, CM, dCM, dwCM, Borderline
Examples), while others correspond to the recently-suggested, class-wise adapta-
tions of well-known complexity measures (F2, F3, F4, N1, N2, N3, N4, T1) [9].
The underlying motivation for these adaptations is that, since certain measures
consider classes altogether, the majority class tends to dominate their computa-
tion and hence they perform poorly in imbalanced domains [4, 8, 143]. Current
adaptations are therefore based on evaluating the individual class complexities,
i.e., decomposing measures into their minority and majority counterparts. As an
example, consider the original N3 measure which determines the error of a 1NN
classifier. The adapted version of N3 consists of taking the 1NN error per class. The
adapted measures have shown promising results in estimating the difficulty of clas-
sification tasks more accurately than the original measures for binary-classification
domains [8, 9], although this is still a line of ongoing research. Except for the
measures discussed herein (and marked in Figure 4), there are no considerations
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regarding the remaining in what concerns imbalanced domains. Naturally, in the
same light of the results previously reported, we can expect a biased behaviour for
certain measures (e.g., those that provide average values over the total number of
examples in data). Nevertheless, others require further investigation.

The devise of adaptations and combinations of existing representations (ergo,
measures) of class overlap remains an open challenge for future research. Although
the presented taxonomy is insightful to associate existing measures to different
class overlap representations, each group of measures still gives emphasis to a par-
ticular facet. To provide a complete characterisation of the problem of class overlap
for a given domain and a full understanding of to what extent it is harming the
classification task, it is required that these measures are either used collectively
or combined to capture several representations simultaneously. The idea that, in
imbalanced domains, class overlap may be more thoroughly characterised by mea-
sures that consider multiple sources of complexity is recently touched upon in [105].
With the development of ONB, authors explore the suitability of combining struc-
tural, local, and class imbalance information to provide good estimates for class
overlap.

Although both topics are currently under research, they show that there is
somewhat a consensus in what concerns the limitations of individual measures
of class overlap, and the need to characterise the class overlap problem in all its
dimensions, while also accounting for class imbalance. This is one of the biggest
open challenges in the imbalanced data field and the reason why a unified view on
the problem is necessary to put forward.

In the next section, we will review the state-of-the-art class overlap-based ap-
proaches applied to real-world imbalanced domains. We will show that, although
under the same rationale of minimising class overlap, the methods often approach
the problem from different perspectives, i.e., focusing on different representations
of class overlap. Also, despite the fact that several class overlap measures have
been discussed in the literature, related research often fails to characterise the
problem in the domains, which complicates the evaluation of the efficiency of the
approaches, besides preventing the generation of informed recommendations for
researchers.

7 Class Overlap-Based Approaches

The topic of learning from imbalanced data has been extensively studied in the
past years, with several outstanding survey papers being recently published [34,
46, 62, 72, 76]. As such, the characterisation of the problem of class imbalance and
respective taxonomies of approaches and applications is quite well-established.
However, few works have attempted to provide a global view on the problem of
class overlap in imbalanced domains that summarises, categorises and compares
the state-of-the-art strategies used to handle both problems simultaneously. Xiong
et al. [147] suggest that data in overlapping regions can be handled by discarding,
merging, and separating schemes. In brief, the discarding scheme only learns from
non-overlapping regions, disregarding the remaining. The merging scheme con-
siders the overlapped data as a new class, whereas the separating scheme treats
overlapping and non-overlapping regions separately, i.e., two separate models are
built for each scenario. Most recently, Pattaramon et al. [135] divide class overlap
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methods depending on whether methods address all overlapping examples or just
those closer to the decision boundaries (borderline examples).

Nevertheless, the relationship between existing class overlap approaches and
class overlap representations remains somewhat hidden. This naturally hinders the
devise of recommendations for researchers, i.e., it is not possible to determine which
approaches would be best for a given domain based on its characterisation. Ulti-
mately, this would be a game-changing contribution to research: guide the choice
of appropriate methods or the development of specialised approaches based on the
characteristics of the domains, going towards a meta-learning logic. Throughout
this section, we will show that, unfortunately, this remains an open issue due to
certain limitations found in current research, which will be summarised at the end
of this section. However, we thoroughly analysed the existing class overlap-based
approaches in order to associate their internal behaviour to the characteristics
of data they are sensitive to. With that, we propose a novel taxonomy of class
overlap-based approaches aligned with the taxonomy of class overlap complexity
measures presented in the previous section.

Figure 26 depicts the most common approaches to handle imbalanced and over-
lapped domains, together with the class overlap representations, information, and
concepts they are associated to. In imbalance data learning, resampling approaches
– undersampling and oversampling – are by far the most popular [111]: it comes
therefore at no surprise that they remain two of the most explored approaches
when handling class imbalance and overlap simultaneously. In addition, cleaning
approaches are also frequently applied, either alone or in combination with under-
sampling and oversampling. Finally, recent research has also explored the use of
ensembles, region splitting, evolutionary, and hybrid approaches. In what follows,
we describe the proposed taxonomy in higher detail, illustrating each category
with both well-established and emergent approaches studied in the context of im-
balanced and overlapped domains. To help the reader navigate this section, Table
2 provides an overview of the discussed class overlap-based approaches. Each ap-
proach is characterised in what concerns its category (according to the established
taxonomy) and the type of information it relies on. The measures used to charac-
terise the data domains in what concerns class imbalance and overlap, as well as
the benchmark of compared approaches used in the respective research work are
also presented.

7.1 Undersampling Approaches

Undersampling approaches focus on removing redundant majority examples from
data and often involve the application of cluster-based methods, thus taking ad-
vantage of structural overlap information to identify and characterise overlapping
regions in the domain. Based on the internal behaviour of methods proposed in
related research, we further divided cluster-based methods into three main types:
density-based, neighbourhood-based and fuzzy-based approaches.

Density-based approaches make use of information regarding the density of
manifolds to define clusters in data and often rely on the well-known DBSCAN
algorithm [40]. A recent example is ClusBUS [32], which discards majority exam-
ples lying on overlapping regions by using DBSCAN to find clusters that contain
both minority and majority examples, and removing enough majority examples to
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Fig. 26: A taxonomy of methods for handling imbalanced and overlapped datasets.
The scheme shows the different class overlap-based approaches that are analysed
in this section, associating each group to common class overlap concepts and rep-
resentations found in related research.

define a vacuum region surrounding minority examples. As previously discussed
in Section 6, structural overlap measures may observe a combination of both ge-
ometrical and graph-based properties (e.g., hypersphere coverage and MST), and
include measures of data sparsity and density of manifolds. Similarly, density-based
undersampling algorithms often incorporate both density-based and graph-based
procedures. DBMUTE uses DBSCAN to define a blemished graph and eliminate
majority examples from the overlap region [16]. DBMIST-US handles overlap-
ping and noisy majority examples through a combination of DBSCAN clustering
with a minimum spanning tree [61].

When the clustering algorithm is k-means, the undersampling approaches rely
mostly on neighbourhood-based information (distances between examples). In the
context of imbalanced and overlapped domains, k-means is used to define the major
core concepts in data, whereas complicated or redundant examples are further
removed from the training set. ClusterOSS [7] is an extension of OSS (One-
Sided-Selection [77]) that uses k-means to choose the candidate majority examples
to start the OSS algorithm. Afterwards, borderline and noisy majority examples
are removed using Tomek links [130]. In turn, CUST first removes borderline
majority examples using Tomek links and the remaining redundant and noisy
majority examples are eliminated after k-means analysis [123].

Finally, some approaches consider soft-clustering algorithms to look for (and
eliminate) overlapping majority examples. This is the case of OBU, which uses
Fuzzy C-means to establish class-membership degrees to majority data exam-
ples [134]. Indecisive examples (those with unclear membership) are considered
to be overlapped and are therefore removed. AdaOBU further incorporates an
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adaptive elimination threshold in OBU allowing its generalisation to datasets with
varying overlap degrees [132].

7.2 Cleaning Approaches

Cleaning approaches focus on cleaning the training set by eliminating redundant
and/or harmful examples for classification. They may remove examples only from
the majority or minority classes, or both (in a two-classification problem). In
imbalanced and overlapped domains, however, cleaning approaches are often used
as undersampling approaches, since the eliminated examples are often exclusively
from the majority class.

All cleaning approaches consider local information, i.e., they commonly rely
on instance-level overlap. Some focus on cleaning complicated examples near the
decision boundaries, thus analysing local data characteristics (data typology or
instance hardness). Accordingly, they determine the safeness level of individual
examples to define which should be removed (e.g., evaluating 1NN rules, kDN
rules or searching for borderline examples). Others offer a more deep cleaning
throughout the entire domain, handling examples that may be located far from
the class borders.

Let us start with more seminal cleaning approaches, which were traditionally
conceived to eliminate harmful examples irrespective of their class, and focused
mostly on borderline examples. Tomek Links (TL) [130] define a pair of ex-
amples from different classes that are each other’s closest neighbours and can be
used as a cleaning approach (removing both points) or undersampling approach
(removing just the majority point). The Condensed Nearest Neighbour Rule
(CNN) [64] eliminates redundant examples by keeping only a consistent subset
of examples, i.e., those from which a 1-nearest neighbour rule would be able to
correctly classify the remaining. Similarly, CNN can be used as an undersampling
approach (US-CNN) by keeping all minority examples and producing a subset of
majority examples. The One-Sided-Selection (OSS) technique [77]) can allevi-
ate the problem of class overlap in imbalanced domains by combining the US-CNN
and the concept of TL to remove redundant, borderline, and noisy majority class
examples in data. The Edited Nearest Neighbour (ENN) rule [144] removes
data examples that are misclassified by their k-nearest neighbours (typically k =
3). It can be used as an undersampling method by eliminating only majority class
examples. Similarly, the Majority Undersampling Technique (MUTE) [18]
eliminates majority examples whose k-neighbourhood is entirely from the minor-
ity class and can therefore be considered a cleaning approach as well. Finally,
another well-known cleaning approach is the Neighbourhood Cleaning Rule
(NCL) [80], which is similar to OSS, although it emphasises more the data clean-
ing procedure by using ENN. These are some well-established cleaning approaches
that can be used as (or incorporated in) undersampling approaches, or even cou-
pled with oversampling approaches (e.g., SMOTE-TL and SMOTE-ENN [11]).
Cleaning procedures have proven to enhance classification results by removing
overlapped examples that existed in the original training dataset or created dur-
ing the synthetisation of new examples [111].

Overall, the above approaches aim to clean complicated examples near the class
boundaries, therefore focusing mostly on borderline regions. However, as discussed
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throughout the paper, despite the fact that borderline examples are a frequent rep-
resentation of class overlap, there are other types of examples scattered through-
out the domain that also contribute to class overlap. Most recently, Pattaramon
et al. [133] proposed a set of cleaning approaches (used for undersampling) that
focus on providing a deeper level of elimination of harmful examples. They are all
based on neighbourhood analysis (instance-level overlap) and therefore identified
with the NB- (i.e., “neighbourhood based”) prefix. The Basic Neighbourhood
Search (NB-Basic) removes any majority example that has a minority neigh-
bour. The Modified Tomek Link Search (NB-Tomek) removes any majority
example with a minority neighbour, only if it appears within the k-neighbourhood
of that minority example. In the Common Nearest Neighbours Search (NB-
Comm), the common majority nearest neighbours of any two minority exam-
ples are identified as overlapped examples and removed. Finally, the Recursive
Search (NB-Rec) combines local information with multiresolution (fine grain
search) information. It starts with the majority examples to be eliminated by NB-
Comm and uses them as secondary queries for NB-Rec. The majority examples
that are the common nearest neighbours of any pair of these secondary queries are
then eliminated as well. By introducing this extension, a finer grain-search criteria
is provided and as a result, a higher number of overlapped majority examples is
detected and removed.

7.3 Oversampling Approaches

Oversampling approaches generally focus on generating new minority examples to
mitigate the problem of class imbalance. In overlapped domains, the main concern
of oversampling approaches is to increase the representation of minority exam-
ples in specific regions of the data space. For that reason, they often rely on
instance-level overlap (local information) to look for candidate examples to guide
the synthetisation process.

By far, the most well-known oversampling approach is the Synthetic Minor-
ity Oversampling Technique (SMOTE) [21]. Although it successfully bal-
ances the data domain, SMOTE has no particular mechanism to alleviate class
overlap and may even generate overlapping examples if the oversampling proce-
dure occurs near the class borders or includes noisy examples located within the
majority class (the problem of overgeneralisation [47]). However, over the years,
several modifications of SMOTE have been proposed [73], more and more tai-
lored to certain characteristics of the data domain, including class overlap. Some
approaches focus either on improving the representation of examples in the bor-
derline regions between classes (Borderline-SMOTE), or in safe regions of the
data space (Safe-Level SMOTE) [17, 63]. Other approaches search the entire
domain and give a higher weight to examples that are harder to learn and should
therefore be oversampled more often (ADASYN) [65]. To do so, they mostly con-
sider instance-hardness and data typology information, namely variations of the
kDN measure. Also considering instance-hardness information are the approaches
that incorporate cleaning procedures. These often couple SMOTE with some of the
cleaning procedures discussed above, namely SMOTE-ENN, SMOTE-TL [11],
and SMOTE-IPF [108]. SPIDER [126] is another example, which couples over-
sampling with deletion of noisy examples. In this case, SPIDER also redirects the
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oversampling towards either only borderline or both borderline and safe regions,
depending on the chosen amplification. Although there are different variations,
these approaches are based on the same underlying information that considers
the kDN of each minority example to decide on their probability of oversampling
and/or their removal from the dataset. Despite these approaches generally improve
the performance of classifiers over imbalanced and overlapped domains, they have
well-known handicaps [111]. Several SMOTE-like methods, by using the same in-
terpolation as SMOTE, are prone to the same problem of overgeneralisation, and
may generate examples in overlapping areas. Also, in some cases, if the probabil-
ity of examples to be oversampled is the same across the domain, some redundant
minority examples might be oversampled unnecessarily. Finally, noisy minority re-
gions can also be oversampled and remain even after the cleaning procedure. These
handicaps occur because the above approaches are focused only on analysing lo-
cal information, disregarding the structure of both minority and majority classes.
Thus, recent research is starting to explore approaches that also consider other
types of information, namely structural information.

As previously discussed, one popular way to consider structural information of
the domain is via clustering approaches. To that regard, AHC [28], CBO [70],
DBSMOTE [19], and MWMOTE [10] are popular cluster-based approaches
that attend simultaneously to structural and instance-level overlap information
on the domain. To this regard, MWMOTE has proven to be a strong competitor
over traditional oversampling approaches, due to its further ability to aggregate
other types of operations (clustering, cleaning, and adaptive weighting of exam-
ples) [111].

Similarly, other recent oversampling algorithms are starting to combine differ-
ent types of information (structural overlap, data typology, and instance hardness)
and operations (clustering and cleaning). ASUWO synthesises more examples in
the sub-clusters with higher misclassification errors [102]. IA-SUWO [141] is an
extension of ASUWO that considers a different weighting scheme for minority ex-
amples (least squares support numerical spectrum values) and the k-information
nearest neighbour method in the oversampling stage. NI-MWMOTE (a MW-
MOTE extension) starts by adaptively removing noise [142]. Then, it uses AHC
to segment the minority class examples and adaptively determine the number of
examples to synthesise in each sub-cluster using misclassification error as a mea-
sure of cluster complexity. The oversampling is performed using MWMOTE. An
interesting detail of NI-MWMOTE is that it also uses information regarding the
density of manifolds (neighbours’ density) to distinguish between suspected and
real noise. Another example is PAIO, which divides the minority examples us-
ing a density-based clustering method similar to DBSCAN (NBDOS), and then
defines different interpolation strategies for each type of minority examples [152].
In this case, rather than the standard data typology defined by k-neighbourhood
analysis, PAIO uses NBDOS to distinguish between inland examples, borderline
examples, and trapped examples.

There are also recent approaches where clustering is more aligned with the
concept of hypersphere coverage. CCR combines cleaning with oversampling by
introducing a energy-based ball coverage strategy [74]. Each minority example has
an associated sphere and energy budget, and the sphere is expanded until there
is no available energy. When the expansion can no longer proceed, the majority
examples are pushed out of the spheres (though not eliminated). The oversampling
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stage relies on the spheres produced during the cleaning stage. For every minor-
ity example, new examples are generated within its sphere, where the proportion
of examples to generate is inversely proportional to the radius of its sphere. G-
SMOTE replaces the interpolation method used by SMOTE to define a flexible
geometric region (a truncated hyperspheroid) where the synthetisation of new ex-
amples occurs [37]. A minority example and one of its closest nearest minority
neighbours are used to define a unit hypersphere where the new synthetic example
will be generated. Through a set of geometric hyperparameters, the hypersphere
can be transformed to represent different configurations (hyperspheroids) and pa-
rameters can be tuned for optimal performance.

Overall, we are witnessing a shift towards approaches that combine multiple
sources of information (local and structural information) and couple different op-
erations to achieve optimal results. The main objective is that new approaches
address the existing limitations of their predecessors, while increasingly adapting
to the characteristics of the domains.

7.4 Other Approaches

Undersampling, oversampling, and cleaning approaches are by far the most com-
mon in the field. Herein, we discuss other emergent approaches to handle imbal-
anced and overlapped domains. These are based on different paradigms, namely
Ensembles, Region Splitting, Evolutionary and Hybrid Approaches.

Ensembles are based on the combination of different classifiers, called base
classifiers. Each base classifier is trained over the data domain and the individ-
ual predictions are combined to produce the final decision. The model resulting
from that aggregation is the ensemble, which is then used to classify new data ex-
amples [146]. In imbalanced learning, popular ensembles are Boosting (commonly
AdaBoost) [49, 50] and Bagging [15]. However, the traditional use of ensembles
(simply combining classifiers) hardly solves the class imbalance problem by itself,
let alone handle both imbalanced and overlapped domains [44]. On contrary, en-
sembles are commonly coupled with resampling (undersampling or oversampling),
and cleaning strategies, in order to adapt to the peculiarities of the domains.

Chen et al. [23] produce a software defect prediction model (SDPM) that com-
bines class overlap reduction and ensemble imbalance learning. First, NCL cleaning
is used to remove the overlapping examples. Then, the data is randomly under-
sampled several times to produce different subsets that are trained by different
classifiers. The final classification model is built by assembling the base classifiers
through the AdaBoost mechanism. CluAD-EdiDO [26] was developed to handle
multi-class imbalanced and overlapped datasets. First, a clustering-based adap-
tive decomposition is applied to generate an adaptive number of clusters. Then,
an editing-based diversified oversampling method is used to address class imbal-
ance and overlapping in different clusters. For the overlapping problem, a cleaning
technique is used (removing examples with complicated neighbourhoods) whereas
the class imbalance problem is alleviated by SMOTE or DKNOS [26, 112], de-
pending on the type of example. Finally, an ensemble learning framework is used
to select the best classification algorithm for each cluster.
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Region Splitting approaches (same as separating scheme approaches [147])
separate the data domain into non-overlapping and overlapping regions (or safe
and overlapping regions). Then, each region is handled independently, by different
classifiers or using different parametrisations of the same classifier (e.g., different
k values in kNN, different SVM hyperparameters) [127, 128].

In the last couple of years, this “divide-and-conquer” strategy has been popular
in imbalanced and overlapped domains. Soft-Hybrid [131] divides the data do-
main into non-overlapped, borderline, and overlapped regions using the modified
Hausdorff distance [67], Radial Basis Function Networks (RBFN), and k-means.
After the boundaries of each region are found, DBSCAN is applied to the border-
line regions, whereas RBFNs are considered for the remaining. OSM [81] separates
the data space into soft and hard overlap regions. Soft-overlap regions are classified
using the decision boundary of the OSM classifier (a modified fuzzy SVM), whereas
hard-overlap regions are classified using 1NN. An important feature of OSM is the
integration of instance-level overlap (defined using kNN) and global information
regarding class imbalance (via the Different Error Cost algorithm [12]) to produce
overlap-sensitive costs (weights) that are further incorporated in its optimisation
function.

Evolutionary Algorithms (EAs) are nature-inspired solutions, often as-
sociated to biological processes, such as reproduction, mutation, and recombi-
nation [119]. The process of finding an optimal solution is based on a natural
selection mechanism: the weakest solutions are eliminated whereas the strongest
are retained in the subsequent evolutions. In imbalanced and overlapped domains,
EAs are used to select a representative set of examples from the training set that
simultaneously minimise the imbalance ratio, improve the representation of the
minority class in overlap regions, and avoid information loss.

EVINCI [42] uses a multi-objective evolutionary algorithm (NSGA-II [35])
to selectively reduce the concentration of redundant majority examples in the
overlapping areas, thus improving the representation of minority examples in these
areas. EHSO [153] finds overlapping regions by analysing the local neighbourhood
of each majority example. If a given majority example has at least one minority
class neighbour, then it is considered an overlapping example. Then, overlapping
majority examples are removed in a way that the decision boundary between
classes is maximised while preserving the original data information as much as
possible through the use of CHC evolutionary algorithm [39].

Finally, Hybrid approaches may aggregate a series of features from the previ-
ous methods. As discussed throughout this section, several of the listed approaches
can be considered an hybridisation of others. For instance, certain oversampling
approaches have a data cleaning component (e.g., SMOTE-TL), while ensembles,
region splitting and EA approaches are often coupled with resampling (oversam-
pling, undersampling), and cleaning techniques. Herein, we highlight recent hybrid
approaches explored in the context of imbalanced and overlapped domains.

MBP-GGE [3] uses a modified back-propagation multilayer perceptron to
improve the visibility of the minority class during the training process. Addition-
ally, it eliminates majority examples in overlapping regions using a the Gabriel
Graph Editing technique (GGE). BoostOBU improves the detection of major-
ity class examples in the overlapping region, reducing excessive elimination [132].
First, it applies Borderline-SMOTE to emphasize the minority class borders. Then,
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AdaOBU is applied. ImWeights [79] combines structural and local information to
preprocess imbalanced data by simultaneous clustering and categorising minority
examples. First, it uses ImGrid clustering [78] to produce a grid of cells containing
information on the types of minority examples and existing minority sub-clusters.
Then, examples are weighted according to both their safety and their distance to
neighbouring minority clusters, using a gravity concept. The final weights can then
be incorporated into the learning process of classifiers.

7.5 Summarising Comments

Throughout the previous sections, we have carried out a thorough review of the
state-of-the-art class overlap-based approaches used in imbalanced domains. Ad-
ditionally, we proposed a new taxonomy of methods that resonates with the repre-
sentations of class overlap they are associated to. Overall, it is possible to identify
some trends regarding class overlap-based methods, which we summarise in what
follows.

Undersampling approaches are more prone to consider structural information,
via clustering and graph-based approaches. These strategies are used to establish
the regions of interest of the data domains (core concepts) and discard redundant
and overlapped examples.

Alternatively, cleaning and oversampling approaches prioritise local informa-
tion, mostly evaluating instance-level overlap. In cleaning approaches, the value
of k determines the depth of the cleaning procedure (either addressing borderline
regions or the entire domain). To this regard, multiresolution information (fine-
grain search) has also been explored successfully to recursively remove harmful
examples.

Oversampling is increasingly moving towards parametrised approaches that
adapt the generation of new examples to the characteristics of data. There is also
some concern with the generation of examples that are both informative and di-
verse (e.g., PAIO, G-SMOTE). This allows the generation process to cover more
regions of the data space and alleviate the structural complexity of datasets to
some extent. Oversampling approaches therefore seem more flexible, but may re-
quire a large number of user-defined parameters, for which there is not yet an
established relationship with data characteristics.

Finally, is not uncommon for approaches to share some paradigms (e.g., lo-
cal, structural, and density information, fuzzy logic, and cost-sensitive strategies).
This goes towards the idea that class overlap has different vortices of complexity,
and addressing them altogether could potentially improve results. Also, there is
a considerably lower number of approaches developed within the scope of ensem-
bles, evolutionary, region splitting, and hybrid approaches, which may be due to
the lack of current knowledge on the joint-effect of class imbalance and overlap on
different learning paradigms. This motivates the need to put forward some insights
regarding the footprints of different families of classifiers, as we have performed in
Section 4.

Nevertheless, as stated at the introduction of this section, it is still premature
to derive recommendations for researchers regarding class overlap-based methods
on the basis of related research. On that note, Table 2 provides an overview of
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class overlap-based approaches, referring to the proposed taxonomy, the infor-
mation considered by each approach, the type of data characterisation provided
(i.e., whether both class imbalance and overlap are measured and how), and the
benchmark of methods used for comparison.

Table 2: Benchmark of class overlap-based approaches. For each approach is iden-
tified its category, the type of information it encompasses, the considered measures
of class imbalance and class overlap, and a benchmark of compared methods. Ap-
proaches are marked depending on whether they obtained superior performance
with respect to F-measure/G-mean results (in bold), sensitivity results (†) or AUC
results (‡).

Category Approach Information Measures Compared Methods

ClusBUS†‡
(2014)

Density-based clustering IR SMOTE

DBMUTE‡
(2017)

Density-based clustering
Graph-based

IR
ROS, RUS, SMOTE, BLSMOTE
SLSMOTE, DBSMOTE, TL
MUTE

DBMIST-US
(2020)

Density-based clustering
Graph-based

IR
CNN, ENN, TL, NCL, OSS
SBC, ClusterOSS, RUS, EUS
EE, BC, RUSBoost

Undersampling
ClusterOSS (2014) Cluster-based (k-means)

Local Information (1NN)
IR OSS, RUS†, ROS, SMOTE, CBO

ClusterOSS+ROS‡

CUST‡ (2016) Cluster-based (k-means)
Local Information (1NN)

IR RUS, ROS, ClusBUS, SMOTE, OSS

OBU† (2018) Fuzzy-based clustering IR kmUnder

AdaOBU† (2020) Fuzzy-based clustering
Adaptive threshold

IR
SMOTE, BLSMOTE, kmUnder
SMOTE-ENN, SMOTEBag
RUSBoost, OBU, BoostOBU

MUTE (2011) Local Information (kNN) IR BLSMOTE, SLSMOTE, SMOTE

SMOTE-IPF‡
(2015)

Local Information (kNN)
Ensemble-based
Fine-Grain Search

IR SMOTE, SMOTE-TL, SMOTE-ENN
SLSMOTE, BLSMOTE

NB-Basic (2020) Local Information (1NN)
Cleaning NB-Tomek (2020) Local Information (kNN)

NB-Comm (2020) Local Information (kNN) IR SMOTE, BLSMOTE, ENN
kmUnder, OBU

NB-Rec† (2020) Local Information (kNN)
Fine-Grain Search

MWMOTE‡
(2014)

Cluster-based (hierarchical)
Density information
Local information (kNN)

IR SMOTE, ADASYN, RAMOBoost

ASUWO‡ (2016)

Cluster-based (hierarchical)
Local information (kNN)
Classification Complexity

IR
ROS, SMOTE, BLSMOTE, SLSMOTE
kmUnder, ClusterSMOTE, CBO
MWMOTE

IA-SUWO‡
(2020)

Cluster-based (hierarchical)
Local information (kNN)
Classification Complexity
Adaptive Weighting

IR

ROS, SMOTE, BLSMOTE, ADASYN
SLSMOTE, ClusterSMOTE, MWMOTE
A-SUWO, ISMOTE, kmSMOTE

Oversampling NI-MWMOTE†‡
(2020)

Cluster-based (hierarchical)
Local information (kNN)
Classification Complexity
Density information

IR
ROS, SMOTE, BLSMOTE, ADASYN
SLSMOTE, ClusterSMOTE
MWMOTE, A-SUWO

PAIO†‡ (2020) Density-based clustering
Local information (kNN)

IR
ROS, SPIDER, SMOTE, SLSMOTE
MWMOTE, SMOM, INOS, MDO
RACOG

CCR†‡ (2017) Hypersphere Coverage IR SMOTE, ADASYN, BLSMOTE
SMOTE-TL, SMOTE-ENN, NCL

G-SMOTE‡
(2019)

Hypersphere Coverage IR ROS, SMOTE

SDPM†‡ (2018)
Ensemble-based
Local Information (kNN)
Undersampling

IR
EE, NBLog, RF, NB, SMOTE+NB
RUS+NB, DNC, SMOTEBoost
RUSBoost

CluAD-EdiDO
(2020)

Ensemble-based
Cluster-based
Local information (kNN)
Oversampling

IR and OR
SMOTE, SMOTEBag, RUS, ROS
RUSBoost, KNOS, DOVO, DOAO
MDO, DECOC, GP-ECOC

Soft-Hybrid†
(2015)

Region Splitting
Cluster-based
Local and
Density information

IR and F1 SVM, RBFN
SVM/RBFN:(ROS, RUS, SMOTE)

OSM (2018)
Region Splitting
Fuzzy Logic (Fuzzy SVM)
Cost-sensitive
Local Information
(kNN and 1NN)

IR and OR
SVM, SVM+RUS, SMOTE-SVM, SDC
SVMBoost, FSVM-CIL, EFSVM
EMatMHKS, 1NN

To be continued on the next page. . .
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Table 2: Continued from previous page.

Category Approach Information Measures Compared Methods

Other
Approaches

EVINCI (2019)
Evolutionary-based
Ensemble-based
Graph-based
Local Information (1NN)

IR and N1 SMOTEBag, RUSBag, ROSBag
Adaboost, RUSBoost

EHSO‡ (2020)
Evolutionary-based
Local Information (kNN)
Undersampling

IR and OR
RUS, NCL, NM, IHT, RENN, AKNN
OSS, ROS, SMOTE, BLSMOTE
ADASYN, SMOTE-ENN, SMOTE-TL
RBO, SMOTE-CCA, CCR

MBP-GGE
(2013)

Hybrid Approach
Graph-based
Cost-sensitive

IR SBP, MBP, SBP+GGE, SMOTE, RUS
SMOTE+GGE

BoostOBU (2020)
Hybrid Approach
Fuzzy-based clustering
Local Information (kNN)
Oversampling
Undersampling

IR

SMOTE, BLSMOTE, kmUnder
SMOTE-ENN, SMOTEBag, RUSBoost

OBU, AdaOBU†

ImWeights (2018)
Hybrid Approach
Cluster-based
Local information (kNN)
Cost-sensitive

IR and Data
Typology

ROS, BLSMOTE, ADASYN

†: The approach obtained superior performance with respect to sensitivity results.
‡: The approach obtained superior performance with respect to AUC results.
OR refers to Overlapping Ratio, which may differ between approaches (please refer to the discussion).
EUS[54], EE[85], BC[85], RUSBoost[113], kmUnder[149], SMOTEBag[139], RAMOBoost[25], Cluster-SMOTE[27], ISMOTE[24]
kmSMOTE[38], INOS[20], MDO[1], SMOM[151], RACOG[33], NBLog [97], DNC[140], SMOTEBoost[22], SDC[2]
SVMBoost[138], FSVM-CIL[12], EFSVM[41], EMatMHKS[150], RUSBag[6], ROSBag[139], NM[93], IHT[120], RENN[77]
AKNN[77], RBO[75], SMOTE-CCA[148], KNOS[112], DOVO[52], DOAO[71], DECOC[13], GP-ECOC[83].

Let us first discern why it is not possible to support the application of one
approach (or category of approaches) over the others from a theoretical point of
view, i.e., based on the internal behaviour of approaches. First, despite the extraor-
dinary flexibility of oversampling methods, the generation of synthetic examples
becomes a more complicated task in overlapped domains due to the risk of fur-
ther exacerbating class overlap, i.e., generating examples in problematic regions.
This may be been attenuated to some extent by the development of more refined
approaches, but at the cost of increasing computational complexity and inter-
pretability (too many user-defined parameter to tune). Secondly, the advantage
of oversampling techniques due to their ability of considering the inner structure
of data [59] may not hold for imbalanced and overlapped domains. Indeed, most
recent undersampling and cleaning approaches also comprise structural and local
information of the domains and have proven to surpass well-established oversam-
pling algorithms (Table 2). Finally, there are obvious advantages in using other
types of approaches, such as the incorporation of data complexity and classifica-
tion performance in multi-objective evolutionary approaches, or the combination
of multiple reasoning paradigms when using ensembles.

There are further limitations found in current research that make it impossible
to provide an evidence-based recommendation of strategies to handle imbalanced
and overlapped domains. Let us conclude this section by discussing the most im-
portant.

For the most part, the comparison of class overlap-based methods remains lim-
ited to well-established approaches (e.g., ROS, RUS, SMOTE, Safe-Level-SMOTE,
Borderline-SMOTE) which have been frequently outperformed. It is also not un-
common to find that some class overlap-based approaches are compared with their
analogous class imbalance/distribution-based approaches, rather than approaches
developed for the same purpose (i.e., handling both class imbalance and overlap).
Thus, it would be informative to compare approaches of the same category (e.g.,
DBMIST-US versus AdaOBU), as well as approaches of different categories (e.g.,
DBMIST-US, NB-Comm, and NI-MWMOTE).
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Furthermore, despite many methods are being proposed to overcome class over-
lap, there is a clear lack of information on how datasets are affected by this prob-
lem, i.e., only a few works provide a characterisation of class overlap. In fact, in
most of the related work, the used datasets are not characterised beyond their num-
ber of examples, features, and imbalance ratio (Table 2). In terms of improvements
with respect to class overlap, the approaches are evaluated from a theoretical per-
spective, according to their inner behaviour and the effects of their application on
classification performance, and without real empirical validation. It is suggested
that class overlap is alleviated since the classification results improve, although
no class overlap measures are analysed to support such claim. Hence, it would
be crucial to evaluate class overlap measures before and after the application of
methods to fully characterise their ability to solve the problem and perform a fair
comparison between approaches.

Finally, since no standard measure of class overlap is yet established, related
research resorts to different measures to characterise the domains, similarly to what
was observed for seminal work on synthetic datasets (Section 2). Some works refer
to specific measures (F1, N1, or data typology), while others refer to a generic
Overlapping Ratio (OR), which is based on different variations of instance-level
overlap measures. Beyond not using a standard measurement of class overlap,
related work is in fact focusing on distinct vortices of class overlap, by using
measures that capture different dimensions of the problem. Again, it becomes
clear that there is much to be explored regarding the joint-effect of class imbalance
and overlap, and why a unified view on the problem is necessary for perceptive
advances in the field.

8 Open Challenges

Class overlap is currently one of the major difficulty factors affecting classification
performance in imbalance domains. Although previous research was able to estab-
lish some insights regarding the joint-impact of class imbalance and overlap on
classification performance, the critical analysis presented in this work shows that
there is still a lot to uncover. As discussed throughout Section 5, seminal work on
synthetic data suffered from three major shortcomings, which have not yet been
completely solved for real-world domains (as discussed in Sections 6 and 7):

Class overlap is not mathematically well-established:
Contrary to class imbalance, there is not a well-established formulation and
measurement of class overlap for real-world domains, despite the fact that
several data complexity measures have been discussed throughout the years.
This leads to the lack of characterisation of class overlap across recent research
and prevents a deeper analysis and comparison of proposed approaches.

Class overlap assumes different representations:
Due to the lack of a standard measurement of class overlap, related research on
real-world domains uses different measures that may be focusing on distinct
vortices of the problem, which further complicates the comparison between
approaches. Nevertheless, it is possible to associate the underlying principles
of existing class overlap-based approaches to the class overlap representations
they are sensitive to. Thoroughly characterising class overlap in real-world
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domains would be instrumental to guide the choice of appropriate approaches
and the development of specialised methods.

The class overlap degree does not take other factors into account:
Recent advances in the field show that there is an increasing interest in the
study of class overlap measures that account for other characteristics of data,
especially class imbalance [8, 9]. Some well-established measures have recently
proved to be biased indicators in the presence of class imbalance, and conse-
quently new adaptations are starting to emerge. Beyond class imbalance, it
seems that future research will gravitate more and more around the idea that
class overlap comprises multiple sources of complexity, and that new measures
need to account for its heterogeneous nature [105].

In this work, we provide a comprehensive and unique view on the joint-effect of
class imbalance and overlap, and discuss new perspectives in light of the limitations
found in related work. In sum, the research community needs to move towards a
unified view of the problem of class overlap in imbalanced domains regarding three
main topics:

1. Representations of class overlap:
It is important that the research community comes together in establishing im-
portant concepts associated with class overlap and defining the types of degra-
dation they are associated to, i.e., their impact on classification performance.
To this regard, the ideas explored in this work regarding distinct representa-
tions of class overlap aim to start the discussion among researchers. Following
directions should be taken in order to fully understand the problem of class
overlap in real-world domains:

• The study of public repositories (e.g., UCI5, Kaggle6, KEEL7, OpenML8)
in what concerns the analysis of data intrinsic characteristics would be an
important contribution to future research. With respect to the problem of
class overlap, the taxonomy provided in Section 6 allows to group datasets
depending on their dominant overlap representation. Accordingly, some do-
mains may be conceptually intertwined (structural overlap), whereas others
may be mostly affected by complicated examples (referring to instance-level
overlap). We are currently conducting a large experimental study over im-
balanced and overlapped datasets, focusing on distinct representations of
class overlap and the ability of the identified groups of class overlap com-
plexity measures to effectively characterise them. Also with respect to the
established representations of class overlap, it would be interesting to study
the effect of each type of degradation (and their combination) on the per-
formance of classifiers with distinct learning paradigms.

• The enhancement of existing repositories with artificial datasets (or modi-
fication of real-world datasets via data morphing [29, 109] or evolutionary
algorithms [48, 91, 96, 99]) is also a possibility for future research. In such

5 https://archive.ics.uci.edu
6 https://www.kaggle.com
7 http://keel.es
8 https://www.openml.org
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a way, the diversity of current repositories can be improved by tailoring
the new datasets to specific sources and ranges of data complexity (e.g.,
introducing specific vortices of class overlap, more complex data structures,
and class skews).

• In the scope of artificial data generation, we recommend the multidimen-
sional data generator described in [145], for which we provide the docu-
mentation in English so that more researchers are able to understand and
configure it. Additionally, we include our example collection of generated
artificial datasets, as well as visualisation modules for data typology.9 We
welcome other researchers to contribute with their own research data in
order to move towards the creation of a representative repository of data
complexity factors, beyond imbalanced and overlapped datasets.

2. Characterisation and quantification of class overlap:
Future research should keep moving towards the definition of measures with
broader points of view, i.e., that are able to combine different representations of
class overlap and consider other factors, mainly class imbalance. On that note,
the discussion presented in Section 6 can serve as stepping stone. It provides
an overview of existing class overlap measures and the class overlap represen-
tations they are associated to, the type of insights they provide, and whether
they consider additional complications (e.g., class imbalance). The following
directions may guide future researchers towards a better insight into the char-
acterisation of the class overlap problem in imbalanced domains:

• Acknowledging class overlap as a heterogeneous concept, the development
of new measures that combine several sources of complexity/information is
perhaps the most pressing topic for future research. To this point, exist-
ing complexity measures focus on assessing individual properties of data,
whereas real-world domains require more perceptive and flexible sets of
measures. In that regard, our proposed taxonomy may be a starting point
to the exploration of measures with broader points of view, namely in what
concerns the combination of class overlap representations and associated
insights.

• Beyond the measures identified in Figure 4 and highlighted in Section 6.5,
which have been designed or adapted to account for class imbalance, the
remaining should be further investigated in imbalanced domains.

• The development of approaches to assess other learning tasks other than
binary-classification problems, namely multi-class domains, also remains
a topic for future research. Most class overlap measures are studied over
binary-classification domains, and current adaptations to class imbalance
(i.e., class decomposition) may not be adequate to the evaluation of multi-
class problems [26, 53, 103, 109].

3. Benchmark of approaches for imbalanced and overlapped domains:
It would be important to provide a benchmark of approaches that simulta-
neously handle class imbalance and overlap, in light of the ideas discussed
throughout the paper. It is crucial to compare state-of-the-art approaches with

9 https://github.com/miriamspsantos/datagenerator
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each other, rather than with well-established methods. Also, a more insightful
characterisation of datasets is necessary. It is fundamental to fully characterise
the problem of class overlap in the domains, so that improvements introduced
by the approaches are more profoundly assessed. Also, the characterisation of
domains is essential to infer on the behaviour of approaches with distinct un-
derlying mechanisms. To this regard, the summary of existing benchmarks and
the taxonomy proposed in Section 7 is a good starting direction. The devel-
opment of new approaches for handling imbalanced and overlapped domains
may take into consideration the following directions:

• Future research should evaluate new proposed approaches against emergent
methods developed during recent years, rather than limiting the analysis
to well-established approaches. It is also important to consider a deeper
characterisation of datasets, beyond the number of examples, features, and
imbalance ratio. The same is true regarding the standardisation of perfor-
mance metrics. These aspects are crucial to guarantee a fair evaluation and
comparison of approaches.

• A large number of class overlap-based approaches is based on the evalu-
ation of complicated examples (e.g., borderline, noisy examples), mostly
relying on the assessment of instance-level overlap. New studies in the field
should explore other vortices of class overlap simultaneously, to produce
more robust solutions.

• Future work should consider sharing the source code and obtained results of
proposed approaches, in order to guarantee the reproducibility of research
results. Regarding imbalanced and overlapped domains, we provide a col-
lection of related resources (data and code), which researchers may consider
in future experiments.10 Additionally, we provide an extended Python li-
brary – Python Class Overlap Library (pycol)11 – comprising the class
overlap complexity measures discussed in Section 6, to encourage a more
comprehensive study of the problem of class overlap.

Addressing these avenues would provide a renewed and improved view on the
problem, ultimately leading to important advances in the field.

9 Conclusions

In this work, we address the joint-effect of class imbalance and overlap in clas-
sification tasks, from precursor work to most emergent approaches, showing that
their combination is still not completely understood. Accordingly, the paper may
be divided into two main parts.

First, we start by discussing the insights derived from previous work on the
topic, as well as existing limitations. We focus particularly on the analysis of
some neglected, although important, aspects left undiscussed in seminal research,
namely i) the influence of intrinsic data characteristics (data decomposition, data
structure, data dimensionality, data typology) on the classification performance for
imbalanced and overlapped domains, and ii) the characterisation of the footprints

10 https://github.com/miriamspsantos/open-source-imbalance-overlap
11 https://github.com/miriamspsantos/pycol
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of classifiers with distinct learning biases in this context. The analysis of related
research culminated in the identification of limitations regarding the characteri-
sation of the problem of class overlap in real-world domains and finally, to the
acknowledgement of class overlap as a heterogeneous concept, comprising multiple
sources of complexity.

Accordingly, we move towards the second part of this work, discussing the key
concepts associated to the identifiability and quantification of class overlap, and
the most recent approaches to address the problem in real-world domains. In that
regard, we first propose a novel taxonomy of class overlap complexity measures,
comprising four main class overlap representations: Feature Overlap, Structural
Overlap, Instance-Level Overlap, and Multiresolution Overlap. A comprehensive
set of complexity measures associated with class overlap is thoroughly reviewed,
and each measure is included in one of the established groups, depending on which
representation it is able to capture. Then, the most emergent class overlap-based
approaches in imbalanced domains are analysed following the same perspective:
we further present a taxonomy of class overlap-based approaches associating their
underlying behaviour to the class overlap representations they are attentive to. In
other words, the taxonomy of class overlap-based approaches is aligned with the
established taxonomy of class overlap complexity measures.

In sum, this work provides a global and unique view on the joint-problem of
class imbalance and overlap, discussing important concepts from related research,
exploring new perspectives in light of the limitations found, and establishing key
insights that may hopefully encourage future researchers to move towards a unified
view on the problem and inspire the development of novel approaches that account
for the peculiarities of imbalanced and overlapped domains.
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82. Leyva E, González A, Perez R (2014) A set of complexity measures de-
signed for applying meta-learning to instance selection. IEEE Transactions
on Knowledge and Data Engineering 27(2):354–367

83. Li KS, Wang HR, Liu KH (2019) A novel error-correcting output codes algo-
rithm based on genetic programming. Swarm and Evolutionary Computation
50:100564

84. Liu C (2008) Partial discriminative training for classification of overlapping
classes in document analysis. International Journal of Document Analysis
and Recognition (IJDAR) 11(2):53

85. Liu XY, Wu J, Zhou ZH (2008) Exploratory undersampling for class-
imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics) 39(2):539–550
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