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Abstract. In data imputation problems, researchers typically use sev-
eral techniques, individually or in combination, in order to find the one
that presents the best performance over all the features comprised in the
dataset. This strategy, however, neglects the nature of data (data distri-
bution) and makes impractical the generalisation of the findings, since
for new datasets, a huge number of new, time consuming experiments
need to be performed. To overcome this issue, this work aims to under-
stand the relationship between data distribution and the performance of
standard imputation techniques, providing a heuristic on the choice of
proper imputation methods and avoiding the needs to test a large set of
methods. To this end, several datasets were selected considering different
sample sizes, number of features, distributions and contexts and missing
values were inserted at different percentages and scenarios. Then, differ-
ent imputation methods were evaluated in terms of predictive and distri-
butional accuracy. Our findings show that there is a relationship between
features’ distribution and algorithms’ performance, and that their per-
formance seems to be affected by the combination of missing rate and
scenario at state and also other less obvious factors such as sample size,
goodness-of-fit of features and the ratio between the number of features
and the different distributions comprised in the dataset.

Keywords: Missing data · Data imputation · Data distribution

1 Introduction

Missing data imputation refers to the process of finding plausible values to
replace those who are missing in a dataset and is a common data preprocessing
technique applied in several fields [14]. Most often, imputation is performed using
a brute force strategy, where a set of algorithms is used to impute all the features
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in a dataset. Then, the imputed datasets pass to the classification stage, where
the imputation performance is evaluated through the classification error (CE)
[1]. Although this is a standard approach to the missing data problem, it raises
some important hitches: first, since all techniques must be implemented for all
features, its computational cost is high; secondly, it assumes that the same tech-
nique should perform well for all or the great majority of features, which could be
an over-assumption for features with different characteristics and finally, it uses
the CE to evaluate the imputation quality, which for contexts other than classi-
fication, could be inappropriate. In general classification scenarios, the objective
is to efficiently solve a classification problem, and therefore imputation is con-
sidered a required step to produce quality data. When imputation, rather than
classification, is the focus, the use of CE is controversial. Some authors strongly
defend that “imputation is not prediction” [22], and that the imputation method
that minimises the classification error may produce biased estimates and affect
the original data distribution.

Imputation methods should ideally be able to reproduce the true values in
data – Predictive Accuracy (PAC) – and preserve the distribution of those true
values – Distributional Accuracy (DAC) [6]. However, in the majority of impu-
tation works, the nature of data (data distribution) is completely neglected and
the above-mentioned properties are disregarded in favour of CE. Taking into
account the distribution of data could be relevant to guide the choice of an
appropriate imputation method: it considers the intrinsic characteristics of data
and avoids the need to test a large set of methods for datasets where the fea-
tures’ distributions are known. Thus, studying the influence of data distribution
in imputation presents a new challenge for missing data research and may pro-
vide a heuristic on the most appropriate imputation strategy for each feature
in the study, allowing researchers to address missing data problems more easily
and effectively.

This work follows from the initial research of Santos et al. [18], where authors
showed that there was a relation between imputation methods and data distribu-
tion, when missing data is generated completely at random (MCAR mechanism).
In this work, we extend their experimental set up to consider more datasets (15
datasets) and missing not at random (MNAR) mechanism, created in 6 different
ways (scenarios T1 to T6, as will be explained in Sect. 3). Our experiments show
that regardless of the missing data generation scenario, the imputation meth-
ods are in fact influenced by data distribution, with the exception of Support
Vector Machine (SVM). Aside for SVM, that achieves the best PAC and DAC
results for the great majority of distributions, Self-Organizing Map (SOM) is
the overall winner in both metrics. However, the choice of the best imputation
method depends also on the scenario and missing rate at state, besides other less
obvious aspects as the Goodness of Fit (GoF), sample size and ratio of features
per distribution.

The remainder of this document is structured as follows: Sect. 2 discusses
related works regarding missing data imputation in several contexts. Sections
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3 and 4 describe the experimental setup used in this work and report on the
achieved results, while Sect. 5 presents the conclusions and suggests some pos-
sibilities for future work.

2 Related Work

Nanni et al. [13] compared the performance of standard imputation techniques
(including MMimp and KNNimp) and their proposed imputation method for
classification purposes, by generating missing values on 5 health related datasets
at different rates (10–50%). The researchers concluded that their imputation
techniques, based on clustering and random sub-spaces, present better behaviour
than all the others (in terms of CE), achieving a satisfactory performance for
MR greater than 30%. Aisha et al. [2] studied the effects of data imputation
(including MMimp, KNNimp and SVMimp) on the classification of an incom-
plete health dataset (MR of 48%). SVMimp, along with Local Least Squares,
outperformed the remaining techniques (in terms of CE). Rahman and Davis
[15], investigated the classification performance of several imputation methods
(such as SVMimp, MMimp, DTimp) using CE metrics, on a real incomplete
medical dataset with 0–30% MR per feature. The results showed that all impu-
tation methods based on machine learning improved the sensibility (and in some
cases accuracy) of the classification task, in relation to MMimp. Garćıa-Laencina
et al. [7] studied the influence of imputation (including KNNimp and SOMimp)
on classification accuracy, using synthetic and real datasets. In this work, the
authors start by evaluating the imputation quality using PAC (Pearson’s r) and
DAC (Kolmogorov–Smirnov distance) metrics, but just applied KNNimp (with
different k values) on the first feature of synthetics datasets (MR 5–40%). How-
ever, this approach was discarded in favour of CE metrics, since the main objec-
tive of the experiments was to solve a classification problem. Rahman and Islam
[16] propose imputation techniques based on DT and compare them in terms of
PAC - coefficient of determination (R2), Mean Squared Error (MSE) and Mean
Absolute Error (MAE). DAC metrics are, however, neglected. This work used 9
real datasets from different contexts, where missing values were generated (1–
10%). The proposed imputation techniques outperformed the others. Amiri and
Jensen [3] introduced three imputation methods based on Fuzzy Rough Sets and
compared their performances with 11 standard techniques (including KNNimp
and SVMimp), in terms of RMSE (PAC analysis). In this work, the authors
used 27 complete and real datasets from different contexts and inserted missing
values varying from 5 to 30%. The simulations showed that SVMimp, KNNimp
and the three proposed techniques obtained the best results.

In the above-mentioned works, imputation techniques are frequently eval-
uated in terms of CE, and the effects they may have in data distribution are
most often ignored. Moreover, in these approaches, the same technique is used
to impute all features, without considering the possibility that different features
may be more properly imputed with different techniques. This work conducts a
study on the influence of data distribution in missing data imputation, aiming
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to assess how different imputation techniques perform across different feature
distributions and missing generation types, extending the work of Santos et al.
[18].

3 Experimental Setup

Our experimental setup consisted in 4 main stages: Data Collection, Distribution
Fitting and Missing Data Generation, Data Imputation and Evaluation (Fig. 1).

Distribution 
Fitting 

Missing Data 
Generation

Data 
Imputation

Evaluation 
Metrics Data Collection 

ctgbupa

redwine

letter

backpain breast

hillvalley

iris

leaf

parkinson

pen

relax

spectf

wdbc

whitewine

For each 
feature

KNN

Mean

DT

SOM

SVMT6: freq-both

MR {5%,10%, 
15%, 20%, 25%}

T1: pdf-outer

T2: pdf-inner

T3: pdf-both

T4: freq-outer

T5: freq-inner

T7: randomly

Fig. 1. Experimental Setup Architecture, comprising Data Collection, Distribution Fit-
ting and Missing Data Generation, Data Imputation and Evaluation.

Data Collection comprised the selection of several publicly available datasets,
from UCI Machine Learning Repository (http://archive.ics.uci.edu/ml) and
Kaggle Datasets (https://www.kaggle.com/datasets), attending to different con-
texts, sample sizes, number of features and number of different distributions
(Table 1).

After the datasets were collected, the Distribution Fitting and Missing Data
Generation follows. Each feature of each dataset is fitted against a comprehen-
sive set of distributions (beta, birnbaum-saunders, exponential, extreme value,
gamma, generalized extreme value, generalized pareto, inverse gaussian, logistic,
loglogistic, lognormal, nakagami, normal, rayleigh, rician, t location-scale and
weibull) and the Goodness of Fit (GoF) statistic is used to determine the distri-
bution that best fits the data—GoF values vary from −∞ (bad fit) to 1 (perfect
fit). Then, based on the best fitting distribution, the probability density function
(pdf ) is determined and used to define several scenarios from which the missing
values are introduced at different rates (5, 10, 15, 20 and 25%). Missing values
are inserted following 7 distinct methods: the simplest method (T7) consists on
randomly selecting values to remove from each feature (MCAR mechanism); the
remaining methods follow MNAR mechanism and are based on the probability
density function (pdf -based methods: T1 to T3) and on the frequency distribu-
tion (freq-based methods: T4 to T6) of each feature. For each of these methods,
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the missing values are selected considering 3 different scenarios: removing from
the inner areas, outer areas, or both. Inner and outer areas refer to high and
low values of the pdf and freq histograms, respectively. Figure 2 depicts each of
these methods and variations.

(a) T1 (b) T2 (c) T3

(d) T4 (e) T5 (f) T6

Fig. 2. Strategies for missing data generation: T1 to T3 are pdf -based methods while
T4 to T6 are freq-based methods.

The Data Imputation stage considers the top five strategies used in recent
works, attending also to different paradigms: statistical-based (Mean imputa-
tion - MMimp), tree-based models (Decision Trees - DTimp), neural networks-
based (Self-Organizing Maps - SOMimp), similarity-based methods (k-Nearest
Neighbours - KNNimp) and kernel-based methods (Support Vector Machines -
SVMimp), which we briefly describe herein. MMimp is the most common and
simple of imputation techniques: it imputes the missing values with the mean
of the complete values on the respective features [8,13,19]. KNN imputes the
incomplete patterns by finding its k nearest neighbours, found by minimising a
similarity measure. Once those k neighbours are found, the missing values are
imputed according to the type of feature [17]. The KNN implementation used
in this work considers a weighted average of the k neighbours (1–20 neighbours)
to determine the substitute value to impute. In DTimp, each incomplete feature
is used as target, while the remaining features are used to fit the model: missing
values are determined as if they were class labels [5]. SOMimp determines each
incomplete pattern’s Best Matching Unit (BMU) and imputes its missing values
according to the BMU’s weights on the incomplete features [11]. In this work,
several network sizes were tested for SOMimp: 10–100 nodes. Support Vector
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Machines can also be used for imputation (SVMimp), considering the feature to
be imputed as the target. In this work, SVMimp was implemented considering
both a linear (SVMlinear) and a gaussian (radial basis function, RBF) kernel
(SVMrbf) [7]. For the linear kernel, we considered a value of C = 1, while for the
gaussian kernel, different values of C and γ were tested (1e-5 to 1e5, increasing
by a factor of 10).

Finally, the quality of imputation is evaluated regarding two imputation prop-
erties proposed by Chambers [6]: Predictive Accuracy (PAC) and Distributional
Accuracy (DAC). The former refers to a procedure’s efficiency on retrieving the
true values in data while the latter refers to its ability to preserve the origi-
nal data distribution. PAC properties were assessed using the well-known coef-
ficient of determination (R2) and Mean Squared Error (MSE) [10] and DAC
was assessed using the Kolmogorov–Smirnov distance (DKS) [12]. R2 provides
a measure of the correlation between the original and imputed values (efficient
imputations should have a value closer to 1), MSE measures the average squared
deviation of the imputed values from the true values (values closer to 0 suggest
more accurate imputations) and DKS measures the distance between the cumu-
lative distribution functions of the imputed values of a feature and its original
values where better imputations are represented by smaller distance values.

4 Experimental Results and Discussion

Considering all imputation methods, our experiments have shown that SVMimp
is the winning method for the great majority of distributions, with an overall
ratio of victories over 80%, regarding both PAC and DAC metrics. Considering
all distributions, SVMimp obtains the highest mean value for R2 – 0.765 ver-
sus 0.723 obtained with the remaining methods – and the lowest mean values
for MSE and DKS – 0.015 and 0.106 versus 0.019 and 0.136 of the remaining
methods, for the respective measures, showing that it is not affected by data dis-
tribution and surpassing the remaining methods. However, a preliminary anal-
ysis of the results indicated that, if SVMimp was not considered, the remaining
methods performed differently across different distributions, metrics, scenarios
and missing rates. Therefore, we have investigated how the remaining methods
behave in different configurations.

Overall, KNNimp and SOMimp are responsible for the highest performance
results, with a percentage of wins of 46.8% and 43.2%, respectively. Regarding
each individual metric, this tendency is maintained for R2 (Fig. 3a), although
it is slightly different for DKS and MSE: KNNimp is more appropriate to keep
the data distribution (Fig. 3b), while SOMimp is responsible for the best MSE
values (Fig. 3c).

Figure 4a shows the victories and draws, altogether, for each range of consid-
ered missing rates (5–10, 15–20 and 25%). SOMimp and MMimp show a similar
behaviour, where they surpass the other methods for increasing percentages of
missing data. Contrariwise, DTimp and KNNimp tend to perform worse as the
MRs increase. To further study this behaviour, Fig. 4b shows the overall victo-
ries and draws of each method, considering each specific metric (R2, DKS and
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Fig. 3. Overall results (divided by wins and draws) for each metric: R2, DKS and MSE.

MSE). For low MRs (5–10%), KNN outperforms all other methods in terms of
both PAC and DAC, being considered the most frequent winner in all metrics
(50%, 75.2% and 68.6% for MSE, R2 and DKS , respectively). When the MR
increases (15–20%), KNNimp loses its podium to SOMimp in terms of PAC (R2

and MSE), though not DAC, where KNN appears as winner in 57.2% of times.
When the missing rate increases to 25%, the previous behaviour is respected,
although the differences between SOM and KNN are more accentuated. In terms
of PAC, SOMimp’s superiority becomes clearer (66.9% and 59.6% of wins for
MSE and R2), while KNNimp’s dominance in terms of DKS decreases to 49%.

Fig. 4.Overall results (wins and draws altogether) for each imputation method, divided
by MRs (a) and further specified by each metric (b).

The observed results are in agreement with the characteristics of the con-
sidered algorithms. Although MMimp is a rapid and simple solution to impute
missing data, it is known to ignore the relations between the features, disturbing
the original data variance [9]. As such, MMimp tends to have a poor performance
compared to the other methods, in terms of DAC. Regarding KNNimp, previous
works have shown that it has a robust behaviour even for large amounts of miss-
ing data [4,21]. The fact that it uses the information of the most similar cases
rather than all the cases makes it superior to MMimp, being stronger in main-
taining the distribution of data (DAC). DTimp is resilient to outliers and has
the ability to cope with skewed distributions; however, the higher the amount of
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missing data, the more difficult is to have a good decision tree to estimate the
missing values [22]. SOM imputation somehow approximates a clustering solu-
tion, in the sense that the imputations are made in clusters, activation groups
constituted by the k-closest BMUs of a given incomplete pattern. This type of
mapping allows SOM to preserve the data topology, which is one of the factors
that may contribute to its robust behaviour [20].

Out of these four methods, MMimp serves as a baseline, and behaved as
expected, deteriorating the data distribution. DTimp does not seem to be a
general good approach for imputation in terms of PAC and DAC: it estimates
missing values based on the information of the remaining features and there-
fore it produces good estimates when the correlation is high. However, for low
correlations between features it can lead to poor performances, which could be
on the origin of its discouraging behaviour. Finally, imputation algorithms that
approached a clustering-based solution (KNNimp and SOMimp) seem to be gen-
erally appropriate to keep the PAC and DAC properties of data: this fact could
be related to the fact that both these methods properly address the similar-
ity between patterns, using only resembling data points to impute the missing
values.

Figure 5 specifies the overall victories and draws of each imputation by metric
(MSE, R2 and DKS), for each scenario. It is clear that KNNimp achieves the best
results for DAC, regarding all generation types. In terms of PAC, SOMimp seems
to be the preferable approach for all scenarios except T2, where the supremacy
of KNN is noticeable both in terms of MSE and R2.

Fig. 5. Comparison between analogous pairs: freq-based versus pdf -based generations
types.

From Fig. 5 it is also possible to compare the analogous pairs of freq-based
and pdf -based generation types. There are not relevant differences to point out,
except for the imbalance between SOM’s and KNN’s results for PAC metrics in
T2 versus T5 pairs. T2 generation is most often better imputed with KNN for
all metrics, with KNN gaining a clear advantage over SOM; in T5, this gap is
not so clear.
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Since this work considers an extensive set of configurations (distributions,
missing data rates, scenarios and metrics), summarising the conclusions to pro-
vide a clear heuristic is not a trivial process. Thus, we have decided to build a
dataset including each existing variable from each studied dataset to analyse all
the available information. Specifically, the produced dataset includes informa-
tion on the name of distribution, missing rates, metrics, generation type, feature
ratio, number of features, number of features with the same distribution included
in the dataset, sample size, goodness-of-fit of the feature and the best imputation
method, as the target class. An excerpt of such dataset is shown on Listing 1.1.

1 @relation LowLevelInfoT1T2T3T4T5T6T7
2

3 @attribute Distribution_class {Beta ,BirnbaumSaunders ,Exponential ,
ExtremeValue ,Gamma ,GeneralizedExtremeValue ,GeneralizedPareto ,
InverseGaussian ,Logistic ,Loglogistic ,Lognormal ,Nakagami ,Normal ,
Rayleigh ,Weibull ,tLocationScale}

4 @attribute MissingRate {5 ,10 ,15 ,20 ,25}
5 @attribute Metric_class {ksdistance ,mse ,pearson}
6 @attribute GenType_class {T1 ,T2 ,T3 ,T4 ,T5 ,T6 ,T7}
7 @attribute FeatureRatio numeric
8 @attribute FeatureNo numeric
9 @attribute SameFeature numeric

10 @attribute SampleSize numeric
11 @attribute GoF numeric
12 @attribute bestMethod_class {DT,KNN ,Mean/Mode ,SOM}
13

14 @data
15 Gamma ,5,mse ,T1 ,0.33333 ,12 ,2 ,310 ,0.91288 , SOM
16 Gamma ,5,pearson ,T1 ,0.33333 ,12 ,2 ,310 ,0.91288 , SOM
17 Gamma ,5,ksdistance ,T1 ,0.33333 ,12 ,2 ,310 ,0.91288 ,DT

Listing 1.1. Produced dataset regarding all the available information.

With the help of Waikato Environment for Knowledge Analysis (WEKA)
software, we then started by analysing the simplest rules (ZeroR and OneR)
that allowed a general classification of the data. ZeroR suggested classifying all
instances as SOM (AUC of 0.5) and OneR used GoF to produce a larger set of
rules for classification (AUC of 0.608). These results show that SOM is generally
the overall winner for the great majority of configurations and suggest that GoF
has a high discriminative power. Motivated by these results, we performed an
attribute selection based on Information Gain, which revealed that GoF (0.229),
Sample Size (0.165) and Feature Ratio (0.158) are the top three most discrimina-
tive features. We also ran a sequential forward selection to determine the subset
of features that more accurately traduced the best imputation method for each
input variable. This search returned a subset including the missing generation
scenario (Generation Type), Sample Size and GoF, for which a 10-fold cross-
validation of a C4.5 decision tree returned an average AUC of 0.725, decreasing
just by 0.027 relatively to the AUC results including all information (0.752).

However, these features did not provide any insights regarding the different
distributions. Therefore, we have tested several decision trees in order to obtain
a model that included the most information possible, but without compromising
the interpretability of the model: we looked for subsets of features that enabled a
clear interpretation of a decision tree with a minimum performance drop, in order
to produce meaningful rules. The subset of features that enable the most clear

miriams@student.dei.uc.pt



Exploring the Effects of Data Distribution in Missing Data Imputation 261

decision tree is the distribution of the feature (Distribution), MR, the metric
considered (Metric) and Generation Type, with a mean AUC of 0.675, showing
a decrease of 0.077 relatively to the best AUC achieved (considering all features).
Despite this drop in performance, this model allows the construction of general,
heuristic rules that may be useful for researchers that know the distribution of
data and want to select the best imputation method: an example branch of such
a decision tree is shown in Fig. 6. From this heuristic, some imputation methods
stood out for particular Distribution and Generation Types, e.g.: SOMimp for
Birnbaum-saunders (T1,2,3,4,5,6), Extreme Value (T1,2,3,6) and Weibull (T1,3,4,6);
KNNimp for Logistic (T1,2,3,4,5).

Fig. 6. Example of a branch of the decision tree generated from the con-
sidered subset of features. An example of a rule obtained by the pre-
sented model is: Generation Type = T3 and Metric = MSE and Distribution =
Gamma and Missing Rate <= 10: KNN(46,21)

5 Conclusions and Future Work

This research follows from Santos et al. [18], where authors found a relation
between data distribution and imputation quality, showing that the latter is
influenced by the missing rate and the ratio of features per distribution, when
missing data is generated completely at random. Herein, we extend the work of
Santos et al. to more extreme setups, where missing values affect specific areas
of features’ frequency histograms and probability density functions. To this end,
a set of comprehensive experiments were conducted in order to study the effect
of several data distributions on well-known imputation algorithms. We collected
several datasets with different characteristics, fitted the data to determine the
best distribution that describes each feature and then inserted missing data in
7 different approaches (T1 to T7). After the insertion of missing values, five
imputation methods were used to reproduce the original values and the results
were evaluated in terms of PAC and DAC metrics.

From the results gathered we can summarise the following conclusions:

• SVMimp is the winning method for nearly all distributions in both PAC and
DAC metrics, unaffected by data distribution;

• Overall, imputation algorithms that followed clustering-based solutions
(KNNimp and SOMimp) seem to be generally appropriate to keep the PAC
and DAC properties;
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• KNNimp is more appropriate in terms of DAC and SOMimp seems preferable
in terms of PAC;

• KNNimp outperforms all methods regarding both PAC and DAC metrics
for MRs < 15%, However, for MRs ≥ 15% SOMimp is generally the best
approach for PAC, though for DAC, KNNimp still maintains its superiority.

With more detail on the heuristic analysis we have the following conclusions:

• Overall, SOMimp is the most robust approach across several scenarios;
• GoF, Sample Size, Feature Ratio and Generation Type seem to be relevant
features to determine appropriate imputation algorithms, although they do
not provide insights regarding the different distributions;

• It was possible to obtain a clear decision tree model that allows the extraction
of general rules comprising Generation Type, Metric, Distribution and MR;

• SOMimp is the most appropriate method for Birnbaum-saunders, Extreme
Value and Weibull distributions. Logistic distributions tend to be better
imputed with KNNimp.

There are several directions for future work. One is the extension of this
methodology for datasets comprising also discrete features, fitting discrete dis-
tributions and investigating how the studied imputation techniques perform in
each scenario. Also, from a classification perspective, it would be interesting to
assess whether the best imputation techniques regarding PAC and DAC metrics
would also achieve good results in terms of classification error. An ongoing work
is focused on a sensibility analysis of SVMimp, studying the best set of param-
eters that achieve high PAC and DAC results and looking for the absolute most
missing data rate for which SVMimp is still able to maintain the original data
values and distribution.
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8. Garćıa-Laencina, P.J., Sancho-Gómez, J.L., Figueiras-Vidal, A.R.: Classifying pat-
terns with missing values using multi-task learning perceptrons. Expert Syst. with
Appl. 40(4), 1333–1341 (2013)

9. Howell, D.C.: The treatment of missing data. The Sage Handbook of Social Science
Methodology, pp. 208–224. Sage Publications, Thousand Oaks (2007)

10. Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., Kolehmainen, M.: Meth-
ods for imputation of missing values in air quality data sets. Atmos. Enviro. 38(18),
2895–2907 (2004)

11. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (1995)
12. Lopes, R.H.: Kolmogorov-smirnov test. International Encyclopedia of Statistical

Science, pp. 718–720. Springer, New York (2011)
13. Nanni, L., Lumini, A., Brahnam, S.: A classifier ensemble approach for the missing

feature problem. Artif. Intell. Med. 55(1), 37–50 (2012)
14. Pigott, T.D.: A review of methods for missing data. Educ. Res. Eval. 7(4), 353–383

(2001)
15. Rahman, M.M., Davis, D.N.: Fuzzy unordered rules induction algorithm used as

missing value imputation methods for k-mean clustering on real cardiovascular
data. In: Proceedings of the World Congress on Engineering I, pp. 391–394 (2012)

16. Rahman, M.G., Islam, M.Z.: Missing value imputation using decision trees and
decision forests by splitting and merging records: two novel techniques. Knowledge-
Based Syst. 53, 51–65 (2013)
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data distribution in missing data imputation. In: Artificial Intelligence in Medicine,
pp. 285–294. Springer International Publishing, Cham (2017)

19. Sivapriya, T., Kamal, A.N.B., Thavavel, V.: Imputation and classification of miss-
ing data using least square support vector machines-a new approach in dementia
diagnosis. Int. J. Adv. Res. Artif. Intell. 1(4), 29–33 (2012)

20. Sorjamaa, A., Corona, F., Miche, Y., Merlin, P., Maillet, B., Séverin, E., Lendasse,
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