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Abstract
lthough cross-validation is a stan-
dard procedure for performance 
evaluation, its joint application 

with oversampling remains an open 
question for researchers farther from the 
imbalanced data topic. A frequent ex
perimental flaw is the application of 
oversampling algorithms to the entire 
dataset, resulting in biased models 
and overly-optimistic estimates. 
We emphasize and distinguish 
overoptimism from overfitting, 
showing that the former is associ-
ated with the cross-validation 
procedure, while the latter is influ-
enced by the chosen oversampling 
algorithm. Furthermore, we perform 
a thorough empirical comparison 
of well-established oversampling 
algorithms, supported by a data 
complexity analysis. The best 
oversampling techniques seem to 
possess three key characteristics: 
use of cleaning procedures, clus-
ter-based example synthetization and 
adaptive weighting of minority exam-
ples, where Synthetic Minority Oversam-

pling Technique coupled with Tomek 
Links and Majority Weighted Minority 
Oversampling Technique stand out, 
being capable of increasing the discrimi-
native power of data.

I. Introduction
Imbalanced Data (ID) occurs when there 
is a considerable difference between the 

class priors of a given problem. Consider-
ing a binary classification problem, a data-
set is said to be imbalanced if there exists 

an under-represented concept (a minori-
ty class) when compared to the other (a 
majority class) [1]. Prediction models 
built from imbalanced datasets are most 
often biased towards the majority con-
cept, which is especially critical when 
there is a higher cost of misclassifying the 
minority examples, such as diagnosing 
rare diseases [2].

Approaches to handle imbal-
anced scenarios can be mainly 
divided into data-level approach-
es, where the data is preprocessed 
in order to achieve a balanced 
dataset for classification, and algo-
rithmic-level approaches, where 
the classifiers are adapted to deal 
with the characteristic issues of 
imbalanced data [3–6]. By far, 
data-level approaches are the most 
commonly used, as they have 
proven to be efficient, are simple 
to implement and completely 
classifier-independent [2], [7]. 
Data-level strategies fall into two 

main categories, undersampling and 
oversampling: the former consists in 
removing majority examples while the 
latter replicates the minority examples. 
Researchers often invest in oversam-
pling procedures since they are capable 
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of balancing class distributions with-
out ruling out potentially critical ma
jority examples [8].

Cross-validation (CV) is a standard 
procedure to evaluate classification per
formance; yet, its joint application with 
oversampling raises some questions for 
researchers farther from the imbalanced 
data community. Some researchers not 
familiarised with the topic tend to mis
understand some aspects of a standard 
experimental setup in imbalanced do
mains. One of their frequent misconcep-
tions relates to the joint-use of CV 
and oversampling algorithms: oversam-
pling seems to be applied to the entire 
original data, and only then the cross-
validation and model evaluation is per-

for med [9–12]. This misconception 
naturally leads to building biased models 
and producing overoptimistic error esti-
mates (examples of these situations will 
be illustrated in Section III).

In traditional CV, the entire dataset 
is initially partitioned into k folds, where 
k 1-  folds are used to train the predic-
tion model and the left-out fold is used 
for testing. The folds then rotate so that 
all folds are used for training and test-
ing the model, and the final perfor-
mance metrics are averaged across the k  
estimates of each test fold. This process 
assures that k  independent sets are used 
to test the model, simulating unseen 
data: the test set is never seen during 
the training of the model, to avoid 

overfitting the data. Incorrectly ap
plying oversampling while performing 
CV may derive into two main issues: 
overoptimism and overfitting, as we pro-
ceed to explain.

Regarding the issue of overoptimism, 
consider Approach 1 (CV after Overs-
ampling) and Approach 2 (CV during 
Oversampling) as depicted in Fig. 1. In 
the first approach (Approach 1) we design 
a cross-validation setup prone to overop-
timism: the entire dataset is first over
sampled to achieve a 50-50 distribution 
between classes and the cross-validation is 
applied afterwards. In this scenario, it is 
possible that copies of the same patterns 
appear in both the training and test sets, 
making this design subjected to overopti-
mism (Fig. 1 - CV after Oversampling). 
In the second approach (Approach 2), the 
oversampling procedure is performed 
during cross-validation: the dataset is first 
divided into k  stratified partitions and 
only the training set (corresponding to 
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Figure 1 Different cross-validation approaches: CV after oversampling (left) and CV during oversampling (right). When the cross-validation is 
implemented after oversampling is applied, similar patterns may appear in both training and test partitions (marked in the schema with an 
asterisk), leading to overoptimistic error estimates. When the cross-validation is applied during oversampling, only the training patterns are 
considered both for generating new patterns and training the model, avoiding overoptimism. In both approaches, similar or exact copies may 
appear in the training partitions, leading to overfitting, which is surpassed by an appropriate choice of oversampling technique.

Incorrectly applying oversampling while performing 
CV may derive into two main issues: overoptimism 
and overfitting.
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k 1-  partitions) is oversampled (Fig. 1 - 
CV during Oversampling). In this scenar-
io, the patterns included in the test set are 
never oversampled or seen by the model 
in the training stage, thus allowing a prop-
er evaluation of the model’s capability to 
generalize from the training data.

Regarding the issue of overfitting, 
some researchers directly associate it to all 
oversampling procedures, while others 
refer to the overoptimistic results of a CV 
approach as “overfitting”, which confuses 
both concepts and hinders their identifi-
cation. For this reason, we here distin-
guish both ideas and explain how they 
relate to CV and oversampling approach-
es, providing some examples:

❏❏ Overfitting occurs when the classifier 
is “tightly fitted” to the training data 
points, and therefore loses its general-
ization ability for the test data. Because 
of this, the classification performance is 
lower in the test set when compared 
to the training set. In this context, 
overfitting is usually associated to 
oversampling techniques that generate 
exact replicas of training data patterns 
(e.g. Random Oversampling - ROS), 
causing an overfit of the model in its 
learning stage.

❏❏ Overoptimism occurs when exact or 
similar replicas of a given pattern 
exist in both the training and test 
sets (well represented in Fig. 1 - CV 
after Oversampling). In this case, 
the classification performance in the 
test sets will be similar to the one 
obtained in the training sets, not 
because the model is able to cor-
rectly generalize to the test data, but 
rather because there are similar pat-
terns in both training and test parti-
tions. In this context, overoptimism 
is associated to incorrect implemen-
tations of cross-validation approach-
es, when oversampling is used.
As an example, consider that we di

vided a dataset into five equal folds. If 
we considered four partitions for train-
ing and applied the ROS algorithm, 
exact replicas of existing minority pat-
terns would be generated: the classifier 
could be so exaggeratedly fitted to the 
training data that it would misclassify 
the test patterns (overfitting occurs). On 

the other hand, imagine that we consid-
ered all five partitions to perform overs-
ampling, creating similar patterns rather 
than exact replicas. Although we are not 
using a technique prone to overfitting, 
we are considering all the data points in 
the oversampling procedure and there-
fore the probability that similar patterns 
are both in the training and test parti-
tions increases (Fig. 1). In this case, we 
are in the presence of an overoptimis-
tic approach.

The importance of a proper cross-vali-
dation approach in imbalanced domains 
was first emphasized by Blagus and Lusa 
[13]. They have evaluated the bias intro-
duced in Classification and Regression 
Trees (CART) when cross-validation and 
sampling techniques – random undersam-
pling, random oversampling and Syn-
thetic Minority Oversampling Technique 
(SMOTE) – are jointly used. The results 
showed that incorrect CV achieved overly-
optimistic estimates for random over
sampling and SMOTE, while random 
undersampling produced accurate predic-
tions, resilient to the change of CV proce-
dure. Although this work provides an 
interesting take on the problem, some 
questions remained unanswered from the 
experimental setup. The number of real-
world datasets used was rather small (10 
datasets) and there was not much vari-
ability in terms of sample size. Therefore, 
although authors claimed that a higher bias 
(overoptimistic effects) was observed for 
smaller datasets, the lack of variability does 
not allow a complete analysis: in this work, 
we use a larger number of real-world data-
sets (86 datasets) to provide a thorough 
evaluation of this topic. Blagus and Lusa 
[13] also refer that the bias is marginal 
when the prediction task is “easy”, without 
supporting this claim with any type of 
complexity measures: we therefore explore 
well-established data complexity measures 
to characterize the difficulty of each datas-

et. Furthermore, the following novel analy-
ses are included:

❏❏ Determine whether Imbalance Ratio 
(IR) influences the classification bias 
(overoptimistic effects);

❏❏ Evaluate incorrect versus correct CV 
approaches from a complexity per-
spective, by analysing the data com-
plexity in training and test partitions;

❏❏ Analyse a higher number of oversam-
pling algorithms, in order to compare 
their inner procedure, determine how 
they handle data complexity and assess 
which are more subjected to overfitting 
and which provide the highest classifi-
cation improvement.
Motivated by the topics presented 

above, the purpose of this work is as follows:
i)	 To fully characterize the risk of over

optimism when CV and oversampling 
algorithms are used, extending the 
work of Blagus and Lusa [13], as previ-
ously described;

ii)	 To distinguish the problem of over-
optimism from the overfitting prob-
lem, including a novel analysis on 
the risk of overfitting and on the 
influence of data complexity on classi-
fication results;

iii)	To study the behavior of 15 well-
established oversampling algorithms 
and their influence on classification 
performance, providing a thorough 
analysis of their inner procedure.
In this way, the contribution of this 

research is two-fold. First, it details impor-
tant aspects on how to properly address 
imbalanced data problems, so that research-
ers farther from the imbalance topic or new 
researchers in the field truly understand the 
nature of the problem and acknowledge 
the most correct validation procedures and 
promising resampling techniques. Secondly, 
for researchers familiarised with the 
imbalanced data field, it provides a thor-
ough empirical analysis of a comprehen-
sive set of oversampling techniques, focusing 

Overfitting is usually associated to oversampling 
techniques that generate exact replicas of training data 
patterns… Overoptimism is associated with incorrect 
implementations of crossvalidation approaches.
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on their behavior/inner procedure and 
strengths/faults, supported by a data com-
plexity analysis.

The structure of the manuscript is 
as follows: Section II presents some 
background knowledge on oversampling 
techniques, complexity measures and per-
formance measures. Then, Section III pres-
ents recent works that make use of 
overoptimistic cross-validation procedures. 
The experimental setup is described in 
Section IV, while the experimental results 
are discussed in Section V. Finally, Sec-
tion VI summarises the conclusions of the 
work and refers to some directions for 
future work.

II. Background Knowledge
This section reviews some background 
information that supports the different 
stages of this work, regarding oversampling 
algorithms, complexity metrics and per-
formance metrics.

A. Oversampling Algorithms

1) ROS
Random Oversampling (ROS) is the 
simplest of oversampling techniques, 
where the existing minority examples 
are replicated until the class distribution 
is balanced. This approach is often criti-
cised since it does not introduce any 
new information to the data (the overs-
ampled examples are mere copies of the 
original data points) and may lead to 
overfitting (even if CV is performed 
properly) [14].

2) SMOTE
Synthetic Majority Oversampling Tech-
nique (SMOTE) works by generating 
synthetic minority examples along the 
line segments joining randomly chosen G  
minority examples and their k-nearest 
minority class neighbors [15]. G  is the 
number of minority examples to overs-
ample in order to obtain the desired bal-
ancing ratio between the classes, and 

along with the value of ,k  it can be speci-
fied by the user. SMOTE will then gener-
ate a new synthetic sample s according 
to ( ),s x x v{= + -  where x is the mi
nority sample to oversample, v is one of 
its chosen nearest neighbors and {  is 
called a gap, in this case, a random number 
between 0 and 1. By generating similar 
examples to the existing minority points, 
SMOTE creates larger and less specific 
decision boundaries that increase the gen-
eralization capabilities of classifiers, there-
fore increasing their performance.

3) ADASYN
Instead of producing an equal number 
of synthetic minority instances for each 
minority example, the Adaptive Syn-
thetic Sampling Approach (ADASYN) 
algorithm, proposed by He et al. [16], 
specifies that minority examples harder 
to learn are given a greater impor-
tance, being oversampled more often. 
ADASYN determines a weight ( )wi  for 
each minority example, defined as the 
normalized ratio of majority examples 
Ni  among its k  nearest neighbors: 
w N k zi i #=  where z  is a normal-
ization constant. Then, the number of 
synthetic data points to generate for 
each minority example is specified as 

,g w Gi i #=  being G  the total neces-
sary number of synthetic minority 
samples to produce according to the 
required amount of oversampling. The 
oversampling procedure is the same as 
SMOTE; the only difference is that 
harder minority examples are replicated 
more often.

4) Borderline-SMOTE
Based on the same idea of providing a 
more clear decision boundary, Han et al. 
[17] suggested two new variations of 
SMOTE – Borderline-SMOTE1 and 
Borderline-SMOTE2 – in which only 
the minority examples near the border-
line are considered for oversampling. 
Borderline-SMOTE first considers the 

division of the minority examples into 
three mutually exclusive sets: noise, safe 
and danger. This division is made by 
considering the number of majority 
examples ml found among each minori-
ty example’s k  nearest neighbors. Thus 
being, if ,m k=l  all the nearest neigh-
bors of a minority data point pi  are 
majority examples, and pi  is considered 
noise; conversely, if ,k pm2 0 i2 $l  is 
considered safe while if ,kk m 22 $l  
pi  is surrounded by more majority ex
amples than minority ones (or surround-
ed by exactly the same number), and 
therefore is considered danger. The “dan-
ger” data points are considered the 
minority borderline examples, and only 
them are oversampled, following a 
SMOTE-like procedure. For Borderline-
SMOTE1 new synthetic examples are 
created along the line between the danger 
examples and their minority nearest 
neighbors; Bordeline-SMOTE2 uses the 
same procedure as Borderline-SMOTE1, 
but further considers the nearest majori-
ty example of each danger data point to 
produce one more synthetic example: 
the distance between each danger point 
and its nearest majority neighbour is 
multiplied by a gap between 0 and 0.5 so 
that the new point falls closer to the 
minority class, thus strengthening the 
minority borderline examples.

5) Safe-Level-SMOTE
Contrary to Borderline-SMOTE, the 
technique proposed by Bunkhumporn-
pat et al. [18], called Safe-Level-SMOTE, 
only synthesizes minority examples 
around safe regions. To specify a safe 
region, a coefficient named safe level ratio 

)(slratio  is defined, which is the ratio 
between the number of minority exam-
ples found among each minority exam-
ple’s ( )p  k  nearest neighbors, ,sl p  and the 
number of minority examples found 
among a randomly chosen neighbor’s 

)(n  k-neighborhood, sl .n  Depending on 
the slratio  of a given minority example, 
five different scenarios may be applied 
to the SMOTE-based generation: if 
both sl p  and sln  are 0, no oversampling 
occurs; if sl 0p 2  and ,sl 0n =  then the 
SMOTE’s gap is set to 0 (the minority 
example is duplicated); if ,sl 1ratio =  the gap 

Complexity measures regard essentially three properties 
of datasets: geometry/topology, class overlapping and 
boundary separability.
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is as in the original formulation of SMOTE 
( , ) ;rand 0 1^ h  if ,sl 1ratio 2  the gap is set to 
,rand sl0 1 ratio^ h so that the new example 

is generated closer to the minority exam-
ple p and finally, if ,sl 1ratio 1  the gap is set 
to ( , )rand sl1 1ratio-  so that, conversely, 
the new example is generated closer to 
the nearest neighbor .n

6) SMOTE + TL
SMOTE + Tomek Links (SMOTE + 
TL) also works on the basis of creat-
ing clear safe regions, by applying 
Tomek links after the data is oversam-
pled with SMOTE [14]. A Tomek link is 
defined as a pair of examples from dif-
ferent classes, one from the minority 
class and the other from the majority 
class, ( , ),x xi j  that are each other’s closest 
neighbors [19]. In this technique, 
SMOTE is first applied to oversample 
the minority examples; then, the Tomek 
links are identified and both data points 
of each pair are removed.

7) SMOTE + ENN
Similar to SMOTE TL,+  SMOTE + 
ENN first generates synthetic exam-
ples from the minority class (through 
SMOTE), from which a process of data 
cleaning follows, using the Wilson’s Edit-
ed Nearest Neighbour Rule (ENN). 
ENN removes any example (either 
minority or majority examples) whose 
class differs from at least two of its three 
nearest neighbors [20]. By removing the 
examples that are misclassified by its three 
nearest neighbors, SMOTE ENN+  
provides a deeper data cleaning than 
SMOTE TL+  [14].

8) ADOMS
Adjusting the Direction Of the synthetic 
Minority clasS examples (ADOMS) 
algorithm combines SMOTE with Prin-
cipal Component Analysis (PCA) to pro-
duce new synthetic minority examples 
along the first principal component of 
the data surrounding each minority 
example [21]. For each minority exam-
ple to replicate, ADOMS searches for its 
k-nearest minority class neighbors and 
performs PCA to determine the first 
principal component axis of the local 
data. The generation of the new example 

is done in a SMOTE-like fashion, but 
instead of being placed along the line that 
joins a minority example and one of its k 
nearest neighbors, it is placed along the 
first principal component axis of its 
k-neighborhood.

9) CBO
Jo and Japkowicz [22] propose an overs-
ampling approach that simultaneously 
handles the between-class imbalance 
(imbalance between different classes) and 
the within-class imbalance, where a single 
class may comprise sub-clusters that hin-
der the learning process of algorithms. 
Their approach is called Cluster-Based 
Oversampling (CBO) and uses k-means 
clustering to guide the oversampling pro-
cedure. First, k-means is applied to each 
class to find the existing sub-clusters; 
then, the majority class is oversampled – 
each sub-cluster of the majority class is 
inflated until it reaches the size of the 
largest majority sub-cluster. Finally, the 
minority class is oversampled: each sub-
cluster is oversampled until it reaches 
the size ,N Nmaj minc  where Nmaj  is total 
number of majority examples after overs-
ampling and N minc  is the number of 
minority class clusters. Different overs-
ampling approaches may be coupled 
with CBO algorithm: this work makes 
use of the Random Oversampling 
CBO ,ROS+^ h  as proposed by Jo and 

Japkowicz in the original paper [22] 
and SMOTE CBO( +SMOTE), as dis-
cussed by He and Garcia [1].

10) AHC
Cohen et al. propose an oversampling 
approach based on Agglomerative Hier-
archical Clustering (AHC) [23]. In this 
approach, the minority examples are 
clustered using AHC with both the single 
and complete linkage rules in succession, 
so that the produced clusters may vary. 

Then, fine-grained clusters are retrieved 
from all levels of the generated dendro-
grams and their centroids (prototypes) are 
determined. The process of synthetic data 
generation is based on introducing the 
computed cluster prototypes as new sam-
ples from the minority class, until a com-
plete balance is achieved.

11) MWMOTE
Similarly to ADASYN and Borderline-
SMOTE, the Major i ty  Weighted 
Minority Oversampling Technique 
(MWMOTE) also works on the basis of 
generating synthetic samples in specific 
regions, where the minority examples 
are harder to learn [24]. MWMOTE 
starts by identifying the harder-to-learn 
minority examples ( ),S mini  so that each 
is given a selection weight ( ),Sw  accord-
ing to their distance to the nearest exam-
ples belonging to the majority class. 
These weights are then converted into 
selection probabilities, ,Sp  that will be 
used in the oversampling stage. To gen-
erate the new synthetic samples, the 
complete set of minority class examples 
Smin  is clustered into M  groups. Then, a 
minority example x from S mini  is select-
ed according to the probability ,Sp  and 
another random minority example in 
Smin  that belongs to the same cluster of 
x  is used to generate a new synthetic 
sample in the same way as SMOTE. 
This approach is performed as many 
times as required, according to the nec-
essary number N  of synthetic samples 
to be generated for complete balance.

12) SPIDER
Stefanowski and Wilk propose an algo-
rithm that uses the characteristics of 
examples to drive their oversampling: 
Selective Pre-Processing of Imbalance 
Data (SPIDER) [25]. SPIDER com-
prises two stages: first, each example is 

The tendency of CBO + Random, CBO + SMOTE and ROS 
to overfit the data is somewhat intuitive: as they create 
exact replicas or very similar replicas to the existing 
training patterns, the models tend to overfit these 
training patterns and fail to generalize to different ones.
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categorized into “safe” or “noisy”, ac
cording to the correct or incorrect clas-
sification result returned by its k
-neighborhood, respectively (k 3=  in 
the original formulation).

Then, an amplification strategy must 
be specified by the user: either “weak 
amplification”, “weak amplification with 
relabeling” or “strong amplification”. If 
weak amplification is chosen, the noisy 
minority examples are amplified (copied) 
as many times as there are safe majority 
examples in their k-neighborhood ( ) .k 3=  
“Weak amplification with relabeling” 
allies the amplification of noise minority 
examples described before with a relabel-
ing procedure: noisy majority examples 
surrounded by noisy minority examples 
(considering k 3= ), are relabeled to the 
minority class. The “strong amplification” 
technique processes both the noisy and 
safe minority examples. It starts by ampli-
fying the safe examples by producing as 

many copies as there are safe majority 
examples in their 3-nearest neighbor-
hood and then considers the noisy 
minority examples and reclassifies them 
according to a larger neighborhood 
( ) .k 5=  If an example is correctly classi-
fied, it suffers a standard weak amplifi
cation; otherwise, it is more strongly 
amplified, by considering a 5-nearest 
neighborhood. Finally, for any type of 
amplification chosen, the noisy examples 
of the majority class are removed (in the 
case of “weak amplification with relabel-
ing”, only the un-relabelled noisy major-
ity examples are removed).

SPIDER2 is a modification of SPI-
DER that performs the pre-processing of 
minority and majority examples in two 
separate stages [26]. It maintains the 
choice to perform a weak or strong am
plification for the minority examples; 
while for the majority examples it is pos-
sible to decide whether relabeling is 

required or not. SPIDER2 starts by cate-
gorizing the majority examples into 
“safe” or “noisy” and if the relabeling 
option is chosen, the noisy majority 
examples are relabeled; otherwise, they 
are removed. Then, the minority exam-
ples are also divided into “safe” or “noisy” 
and the amplification proceeds according 
to the chosen technique (weak or strong), 
which are the same as above.

B. Data Complexity Measures
Ho and Basu [27] proposed several 
complexity measures that regard essen-
tially three properties of datasets: geom-
etry/topology, class overlapping and 
boundary separability (Table I).

1) Geometry and Topology
L3 and N4 measure the nonlinearity of 
a linear classifier and a nearest-neighbour 
classifier, respectively. L3 returns the 
error of a Support Vector Machine 
(SVM) [28] with linear kernel in a test 
set created by linear interpolation of 
randomly selected pairs of examples 
from the same class. N4 constructs a test 
set in the same way as for L3 and returns 
the test error for a nearest-neighbor 
classifier. Higher values of these mea-
sures indicate more complex classifica-
tion problems.

2) Overlapping of Individual  
Feature Values
F1, F2 and F3 focus on the ability of a 
single feature to distinguish between 
classes [27]. F1 measures the highest dis-
criminative power of all features in data 
(higher discriminative power indicates 
lower complexity), F2 measures the 
highest volume of overlap between the 
classes’ conditional distributions (if there 
is no overlap in at least one feature, F2 
will be zero), and F3 measures feature 
efficiency, the fraction of points where 
the values spanned by each class do not 
overlap (higher fractions indicate easier 
classification problems).

3) Class Separability
L1, L2, N1, N2 and N3 focus on the 
characteristics of the boundary between 
classes [29]. L1 and L2 measure to what 
extent the training data is linearly separable 

Table I Complexity measures description.

Measure Description Higher Data Complexity 

F1 Highest value of Fisher’s Discriminative 
Ratio (among all features) 

--

F2 Highest volume of overlap between 
classes (among all features) 

++

F3 Maximum feature efficiency (among all 
features) 

--

L1 Minimised error of a linear classifier 
(linear SVM) 

++

L2 Error rate (training set) of a linear 
classifier (linear SVM) 

++

N1 Fraction of points on boundary by MST ++

N2 Ratio of average intra-class and 
inter-class scatter 

++

N3 Error rate of nearest neighbour 
classifier (KNN, k 1= ) 

++

L3 Nonlinearity of linear classifier 
(linear SVM) 

++

N4 Nonlinearity of a nearest neighbour 
classifier (KNN, k 1= ) 

++

The complexity of the classification task is what 
most influences the overoptimistic behavior of 
poorly designed CV procedures: the less complex the 
classification task is, the smaller is the difference 
between the CV approaches.
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using an SVM with linear kernel [30]: if 
a classification problem is linearly sepa-
rable, then L1 is zero and L2 is the train-
ing set error rate. N1 measures the 
fraction of points connected to the oppo-
site class by an edge in a Minimum 
Spanning Tree (MST) and it can achieve 
high values when the classes are inter-
spersed (higher complexity) or when 
the class boundary has a narrower mar-
gin than the intra-class distances (lower 
complexity). However, for the datasets 
used in this research, we observed that 
the first scenario is often the case, and 
for that reason we have associated higher 
values of N1 to a higher complexity 
in Table I. N2 measures the trade-off 
between the within-class spread and the 
between-class spread. In an easy classifi-
cation problem, the within-class scatter 
should be low and the between-class 
scatter should be high; nevertheless, the 
denominator (between-class scatter) 
greatly influences N2 values: we, there-
fore, consider that higher values of N2 
(smaller between-class scatter) traduce 
more complex scenarios. Finally, N3 
measure is the error rate of a 1-nearest 
neighbor classifier (higher N3 values are 
associated to a higher complexity).

Additional information on the pre-
sented complexity measures is available 
in the extended version of the paper 
(https://eden.dei.uc.pt/~pha/Long-version-
CIM.pdf ).

C. Performance Metrics for 
Imbalanced Scenarios
Accuracy (ACC) measures the percent-
age of correctly classified examples and 
is computed as TP TNACC = +^ h  

,TP FN FP TN+ + +^ h  where TP and 
TN are the true positives and true nega-
tives and FP and FN are the false positives 
and false negatives. Given that ACC is 
biased towards the majority class [28], 
alternative metrics should be consid-
ered, such as Sensitivity, Specificity, Preci-
sion, F-Measure, G-mean and the Area 
Under the Receiver Operating Character-
istics (ROC) Curve (AUC) [1]. Sensitivity 
(SENS) is calculated as /TPSENS =
TP FN+^ h and measures the percentage 

of positive examples correctly classified, 
while Specificity (SPEC) refers to the 

percentage of negative examples correctly 
identified and can be computed  a s 

.TNSPEC TN FP= +^ h  Precision 
(PREC) corresponds to the percentage of 
positive examples correctly classified, con-
sidering the set of all the examples classified 
as positive, PREC = .TP TP FP+^ h  
F-measure, G-mean and AUC represent 
the trade-off between some of the metrics 
described above. F-measure (F-1) shows 
the compromise between sensitivity and 
precision, obtained through their harmonic 
mean , ( )F PREC SENS1 2- # #=

( )PREC SENS+  while G-mean re
presents the geometric mean of both classes’ 
accuracies, G mean- = .SENS SPEC#  
At last, AUC makes use of the ROC curve 
to exhibit the trade-off between the clas-
sifier’s TP and FP rates [31].

III. Related Works
This section presents a series of related 
works aiming to show that the less the 
work is related to learning from imbal-
anced data, the more likely the cross-
validation (CV) procedure is poorly 
designed. Thus, related works were 
divided into three main categories: 
“Learning from imbalanced data”, 
“Comparing approaches in a specific 
context” and “Solving a classification 
problem”. The “Learning” category 
includes research works focused on 
performing extensive experiments to 
evaluate diverse sampling techniques 
[32–38]. Typically, these works include a 
large number of publicly available datas-
ets and a comprehensive set of learners 
and sampling algorithms. “Comparison” 
category works perform a comparison 
of oversampling approaches in a specif-
ic context: these works normally in
clude a lower number of datasets and 
sampling strategies. “Classification” 
category comprises works where the 
main objective is to solve a particular 
classification problem and the imbal-

anced nature of data is not the focus. 
The extended version of this paper 
(https://eden.dei.uc.pt/~pha/Long-version-
CIM.pdf ) provides additional informa-
tion on related works, including a table 
that summarises their main characteris-
tics. All works included in the “Learn-
ing” category, except one, perform a 
well-designed CV procedure, where the 
training and test partitions are deter-
mined before any oversampling tech-
nique is applied. As we move towards 
research works whose objective is not to 
provide a general review on ways to deal 
with the data imbalance problem, we 
find a larger number of works where the 
CV procedure is not appropriate: the 
complete dataset is oversampled and the 
partition into training and test is per-
formed afterwards. This is more evident 
if we consider the research works where 
the main objective is to ease a classifica-
tion task, rather than studying different 
approaches to surpass the issues of 
imbalanced datasets. It is possible that 
these researchers were not completely 
familiar ised with imbalanced data 
domains and respective approaches; 
thus, when faced with a specific 
imbalanced context, they resorted to 
the state-of-the-art oversampling ap
proach (namely, SMOTE) to solve the 
issue, but they understood it as a form 
of preprocessing, which created a 
greater propensity for misconception 
during its application. We therefore con-
clude that the less the work is related 
to learning from imbalanced learning, 
the more likely the CV procedure is 
poorly designed.

IV. Experimental Setup
The experimental setup used in this 
work comprises three main approaches: 
Baseline, Approach 1 and Approach 2 
(Fig. 2). For the results presented as 
“Baseline”, the collected datasets are first 

SMOTE + TL and SMOTE + ENN, by applying SMOTE as 
a first step, may be inflating unnecessary noise regions, 
but may also be inflating important, underrepresented, 
minority points.
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divided into five stratified folds (k 5=  
folds is the maximum that allowed a 
proper stratification) and the classifiers 
are applied afterwards, without any type 
of oversampling. The data complexity 
measures and performance metrics for 
the original training and test sets are 
then retrieved. In Approach 1, the origi-
nal datasets are oversampled and the CV 
and performance evaluation are per-
formed afterwards. The data complexity 
measures (for oversampled training and 
test sets) are then retrieved. In Approach 2, 
oversampling is performed during CV: 
the original datasets are first divided 
into five folds (same folds as for the 
Baseline), and only the training parti-
tions are oversampled. The classifiers are 
then trained with the oversampled train-
ing folds and tested in the respective 
original test folds. In this case, the data 
complexity measures are only determin
ed for the oversampled training sets, 
since the data complexity of the test sets 
is the same as obtained from the Base-
line method.

With this setup we aim to perform 3 
main analysis: (i) compare the differences 
in classification performance between 
Approaches 1 and 2, in order to explain 
the risk of overoptimistic error estimates, 
(ii) distinguish between overoptimistic 
and overfitting approaches in imbalanced 
scenarios that consider oversampling 
and (iii) determine which oversampling 
approach is the most appropriate to 
solve the imbalance problem, obtain-
ing the best average results for all the dif-
ferent contexts (datasets) considered in 
this study.

Regarding the process of data collec-
tion, the 86 datasets used in this work 
were collected from two online reposi-
tories, UCI Machine Learning Reposi-
tory (http://archive.ics.uci.edu/ml) and 
KEEL – Knowledge Extraction based 
on Evolutionary Learning (http://www 
.keel.es). The choice criteria included the 
following parameters: complete datasets, 
regarding binary classification problems, 
with a variable sample size, number of 
features and IR. Their main characteris-

tics are summarised in Table II. As a 
note worth mentioning, although the 
variability of datasets considered in this 
work is considerable, especially in com-
parison to the precursor work of Bla-
gus and Lusa [13], we would like to 
point out that the conclusions drawn 
in this research refer to datasets with low 
dimensionality (4-34 features). The 
interested readers may find additional 
information on the data collection stage 
in the extended version of this paper 
(https://eden.dei.uc.pt/~pha/Long-version-
CIM.pdf  ).

V. Results and Discussion
In this section, we start by comparing 
Approaches 1 and 2 regarding their risk 
of overoptimism/overfitting. Then, we 
move to an analysis on data complexity 
and the inner characteristics of each 
oversampling method.

A. Approach 1 Versus Approach 2: 
Evaluating the Risk of Overoptimism 
and Overfitting
To evaluate the issues of overoptimism 
and overfitting regarding the joint-use of 
CV and oversampling approaches, we 
started by comparing the performance 
results of Approach 1 and Approach 2 
(please refer to the extended version of 
this paper (https://eden.dei.uc.pt/~pha/
Long-version-CIM.pdf ). The results con-
firmed that the performance outputted 
by Approach 1 is more optimistic: the 
mean test values of the various perfor-
mance metrics (AUC, G-mean, F-1 and 
SENS) was always higher in Approach 1 
(see extended version). Since the behav-
ior observed for both Approaches is 
consistent for all performance metrics, 
we will refer only to the AUC values in 
the following analyses, in order to pro-
vide a base of comparison with previous 
works, which largely use AUC. Fig. 3 
shows the AUC values (training and 
test partitions) obtained for the origi-
nal datasets (Baseline) and for the 
oversampled datasets, considering both 
Approaches 1 and 2. Furthermore, Table 
III presents the absolute differences 
between AUC values of training and test 
partitions, for both Approaches (listed in 
descending order of differences in 
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(Complete Dataset)
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(k = 5)

Cross-Validation
(k = 5)

Performance
Metrics

Performance
Metrics

Performance
Metrics
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Data Complexity
(Training Partitions)

Data Complexity
(Training Partitions)

Data Complexity
(Test Partitions)
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Approach 1: CV After Oversampling

Approach 2: CV During Oversampling

Figure 2 Experimental setup architecture.
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Table II Characteristics of imbalanced datasets.

Dataset Size Features IR Dataset Size Features IR 

bupa 345 6 1.38 vowel0 988 13 9.98

pageblocks-1-3vs4 472 10 1.57 ecoli-0-6-7vs5 220 7 10.00

glass1 214 9 1.82 glass-0-1-6vs2 192 9 10.29

ecoli-0vs1 220 7 1.86 ecoli-0-1-4-7vs2-3-5-6 336 7 10.59

wisconsin 683 9 1.86 led7digit-0-2-4-5-6-7-8-9vs1 443 7 10.97

pima 768 8 1.87 ecoli-0-1vs5 240 7 11.00

cmc1vs2 961 9 1.89 glass-0-6vs5 108 9 11.00

iris0 150 4 2.00 glass-0-1-4-6vs2 205 9 11.06

glass0 214 9 2.06 glass2 214 9 11.59

german 1000 20 2.33 ecoli-0-1-4-7vs5-6 332 7 12.28

yeast1 1484 8 2.46 cleveland-0vs4 173 14 12.31

haberman 306 3 2.78 ecoli-0-1-4-6vs5 280 7 13.00

vehicle2 846 18 2.88 shuttle-c0-vs-c4 1829 9 13.87

vehicle1 846 18 2.90 yeast-1vs7 459 8 14.30

vehicle3 846 18 2.99 glass4 214 9 15.46

glass-0-1-2-3vs4-5-6 214 9 3.20 ecoli4 336 7 15.8 

transfusion 748 4 3.20 abalone9-18 731 8 16.4 

vehicle0 846 18 3.25 dermatology-6 358 34 16.9

ecoli1 336 7 3.36 thyroid-3vs2 703 21 18.00

newthyroid1 215 5 5.14 glass-0-1-6vs5 184 9 19.44

ecoli2 336 7 5.46 pageblocks-1vs3-4-5 5144 10 21.27

balance_scaleBvsR 337 4 5.88 shuttle-6vs2-3 230 9 22.00

balance_scaleBvsL 337 4 5.88 yeast-1-4-5-8vs7 693 8 22.10

segment0 2308 19 6.02 pageblocks-1-2vs3-4-5 5473 10 22.69

glass6 214 9 6.38 glass5 214 9 22.78

yeast3 1484 8 8.10 yeast-2vs8 482 8 23.10

ecoli3 336 7 8.60 letter-U 20000 16 23.60

pageblocks0 5472 10 8.79 flare-F 1066 11 23.79

ecoli-0-3-4vs5 200 7 9.00 car-good 1728 6 24.04

yeast-2vs4 514 8 9.08 pageblocks-1vs4-5 5116 10 24.20

ecoli-0-6-7vs3-5 222 7 9.09 car-vgood 1728 6 25.58

ecoli-0-2-3-4vs5 202 7 9.10 letter-Z 20000 16 26.25

glass-0-1-5vs2 172 9 9.12 kr-vs-k-zero-onevsdraw 2901 6 26.63

yeast-0-3-5-9vs7-8 506 8 9.12 yeast4 1484 8 28.10

yeast-0-2-5-6vs3-7-8-9 1004 8 9.14 winequality-red-4 1599 11 29.17

yeast-0-2-5-7-9vs3-6-8 1004 8 9.14 poker-9vs7 244 10 29.50

ecoli-0-4-6vs5 203 7 9.15 yeast-1-2-8-9vs7 947 8 30.57

ecoli-0-1vs2-3-5 244 7 9.17 abalone-3vs11 502 8 32.47

ecoli-0-2-6-7vs3-5 224 7 9.18 yeast5 1484 8 32.73

glass-0-4vs5 92 9 9.22 kr-vs-k-threevseleven 2935 6 35.23

ecoli-0-3-4-6vs5 205 7 9.25 winequality-red-8vs6 656 11 35.44

ecoli-0-3-4-7vs5-6 257 7 9.28 abalone-17vs7-8-9-10 2338 8 39.31

yeast-0-5-6-7-9vs4 528 8 9.35 abalone-21vs8 581 8 40.50



68    IEEE Computational intelligence magazine | November 2018

Approach 2). The p-values derived from 
a Mann-Whitney test are also included 
and confirm that the train-test differenc-
es between Approaches 1 and 2 are sig-
nificantly different. In the extended 
version of this paper, the interested read-
er may find additional statistical tests for 
training and test partitions individually, 
and a table of 10 representative datasets 
for which the classification results are 
discussed in detail.

As shown in Fig. 3, the training 
results are similar, which suggests that the 
major difference between both approach-
es relies on the characteristics of the test 
sets. In Approach 1, it is the overoptimism 
problem (rather than the overfitting) that 
is identified, given that the difference 
between training and test results is not 
considerable (Table III). In this scenario, 
the test sets have similar characteristics to 
the training sets (are balanced and may 
contain exact replicas or similar patterns 
to the training points). From Table III, it 
can be observed that for Approach 1, the 
best methods often include CBO and 
ROS. CBO+Random and ROS create 
exact replicas of existing data points, and 
since the division (i.e., CV) is performed 
after the oversampling procedure in the 
entire dataset, the probability that exact 

replicas exist in both the training and test 
sets increases, thus producing better 
results. In the case of CBO + SMOTE, 
although SMOTE creates synthetic 
examples, it does so by inflating the clus-
ters defined by k-means algorithm, which 
may reduce the data variability intro-
duced in the dataset. Therefore, patterns 
in the test sets may also be similar to the 
ones comprised in the training sets.

In Approach 2, the difference bet
ween the results of the training and test 
sets is more accentuated: in this scenario, 
the test sets follow the same distribution 
as the original dataset and its patterns are 
never considered in the oversampling or 
training phases. As a result, overoptimism 
does not appear in this scenario. However, 
some overfitting effects may occur. Con-
sidering the presence of overfitting as a 
difference around 0.1 between the train-
ing and test AUCs [39], it can be observed 
that the great majority of oversampling 
methods cannot be responsible for over-
fitting effects. However, some methods 
seem to be introducing overfitting 
(Table III). CBO+Random, which 
obtains the worst results, seems to be the 
method responsible for the highest 
amount of overfitting, followed by Bor-
derline-SMOTE and CBO SMOTE.+  

,ROS  SMOTE ENN+  and Safe-Level-
SMOTE, although in a lighter scale, also 
seem to have some generalization issues, 
where the difference between train-
ing and test AUCs also comes close to 
0.1. The same cannot be observed for 
Approach 1 given that the overoptimism 
problem highly dominates the results, 
preventing the identification of these 
overfitting effects. The tendency of 
CBO + Random, CBO + SMOTE 
and ROS to overfit the data is some-
what intuitive: as they create exact repli-
cas (CBO Random+  and ROS) or 
very similar replicas (CBO SMOTE+  
by creating synthetic examples in defined 
clusters) to the existing training patterns, 
the models tend to overfit these training 
patterns and fail to generalize to differ-
ent ones. Further on, Section V.3 per-
forms a detailed analysis of Approach 2, 
reviewing the advantages and disadvan-
tages of each oversampling algorithm, 
allowing the understanding of why Bor-
derline-SMOTE and Safe-Level-SMOTE 
may present generalization issues (which 
also explains their poor performance). 
The major issue of these methods is that 
the definition of danger/borderline 
examples (Borderline-SMOTE) and 
safe examples (Safe-Level-SMOTE) 
may fail in certain scenarios and preju-
dice the classification task (inability to 
generalize). Finally, SMOTE+ENN 
shows a training/test difference of 0.096, 
which is considerable when compared 
to its analogous SMOTE TL+  (0.091) 
and precur sor SMOTE ( 0 . 087 ) . 
Both methods (SMOTE ENN+  and 
SMOTE TL+ ) were developed to sur-
pass the issues of overgeneralization of 
SMOTE. However, as will be discussed 
further on (Section V.3), the ability of 
SMOTE to create larger decision bound-
aries seems to be a major strength, where-
as its successor procedures seem to create 
a higher risk of overfitting the training 
data. This may be due to excessive 
cleaning applied after SMOTE. In the 
case of SMOTE TL,+  the issue is not 
critical (0.091), as only the Tomek Links 
are removed. For SMOTE ENN,+  the 
issue is aggravated (0.096) due to its 
deeper data-cleaning procedure. Such 
cleaning aims to simplify the training 

Table III AUC differences between training and test partitions.

Train-Test Difference Man-Whitney

Algorithm Approach 1 Approach 2 p-value 

CBO + Random 0.011 0.112 9.26E-23 

Borderline-SMOTE2 0.019 0.104 8.34E-18 

Borderline-SMOTE1 0.020 0.104 1.31E-17

CBO + SMOTE 0.016 0.099 1.18E-17 

ROS 0.018 0.097 2.17E-17 

SMOTE + ENN 0.019 0.096 6.07E-16

Safe-Level-SMOTE 0.019 0.095 2.54E-16 

SMOTE + TL 0.020 0.091 1.32E-14 

AHC 0.023 0.089 1.36E-12 

SPIDER 0.022 0.088 3.18E-17 

SMOTE 0.023 0.087 2.83E-41 

ADASYN 0.024 0.086 4.53E-12 

ADOMS 0.024 0.085 7.92E-12 

SPIDER2 0.025 0.084 6.93E-08 

MWMOTE 0.025 0.084 2.69E-12 

Baseline 0.069 0.069 9.94E-01 
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data and ease the definition of less com-
plex class boundaries, although the results 
suggest that this may not be advantageous 
for all scenarios: such simplification may 
jeopardize generalization. Focusing on the 
test AUC results, MWMOTE and 
SMOTE TL+  seem to be the best overs-
ampling methods (Fig. 3).

B. Data Complexity Analysis
In order to better support the existence 
of overoptimism in Approach 1 (CV 
after oversampling), we have investigated 
the complexity of the training and test 
partitions for all datasets, in both Ap
proaches 1 and 2. We hypothesize that 
the overoptimism is related to the differ-
ence between training and test partitions 
as explained in what follows. When 
oversampling is applied before CV, the 
test and training partitions will have a 
similar structure, and therefore their 
complexity is similar - the classification 
is more straightforward, given that the 
algorithm learns from similar contexts. 
When oversampling is performed dur-
ing CV, the test and training partitions, 
as previously explained, have a different 
structure, which hinders the classifica-
tion task.

Fig. 4 shows the difference (in mod-
ule) between the complexity of the 
training and test partitions, on average, 
for each approach. This is performed for 

all oversampling algorithms, and the dif-
ferences in complexity are also related to 
the mean test AUCs for each algorithm. 
For the original (Baseline) partitions, the 
AUC values and differences in complex-
ity are the same for both approaches.

From Fig. 4, it can be observed that 
the results are consistent with our rea-
soning: the difference in complexity in 
Approach 2 is higher than for Ap
proach 1. In some cases, algorithms 
SPIDER and SPIDER2 show an antag-
onistic behavior to the other methods, 
which may be due to their process of 
generating new data (that differs from 
the remaining algorithms). In the imple-
mentation used in this work, SPIDER 
uses a weak amplification strategy, where 
the minority class examples are replicat-
ed according to the existence of majori-
ty data points marked as “safe” among 
their k nearest neighbors. Given a com-
plex dataset, where there are only a few 
“safe” examples, the minority examples 
are never oversampled. For SPIDER2, 
we have used a strong amplification 
strategy with relabeling, where the 
neighborhood to be considered is 
extended to ,k 2+  and the class of the 
original majority examples marked as 
“noisy” is directly changed. Additionally, 
SPIDER and SPIDER2 are the only 
methods that do not guarantee an equal 
class distribution, i.e., it is not guaran-

teed that the resulting dataset, after 
oversampling, is balanced. These differ-
ences from the other methods could be 
the origin of their erratic behavior 
regarding both the results of the classifi-
cation and complexity measures. The 
intrinsic characteristics of each oversam-
pling algorithm will be further discussed 
in Section V.3.

We continue this section by address-
ing the questions raised by Blagus and 
Lusa [13] that were not fully answered in 
their experimental setup (please check 
Section I). Thus being, we analysed the 
mean test AUC results for ROS and 
SMOTE methods (the two oversam-
pling methods used by Blagus and Lusa 
[13]), for all datasets ordered by their 
sample size and IR: from the simulation 
results, no relation was found with 
either one. For this reason, and due to 
space restrictions, this analysis is not 
included herein, but it is fully detailed in 
the extended version of the paper (https://
eden.dei.uc.pt/~pha/Long-version-CIM 
.pdf  ). In terms of complexity, we have cho-
sen to present the F1 metric (Fig. 5). The 
results using other complexity measures 
followed the same tendency, yet F1 seems 
the most straightforward to understand: it 
measures the highest discriminative 
power considering all the features in the 
dataset – if at least one feature has a high 
discriminative capability (its values allow 
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to distinguish between classes), then the 
classification task is “easy”. Fig. 5 shows 
that the complexity of the classification 
task is what most influences the overop-
timistic behavior of poorly designed CV 
procedures: the less complex the classifi-
cation task is, the smaller is the differ-
ence between the CV setups (Approach 1 
and Approach 2). Indeed, when the clas-
sification task is easier, the decision 
boundary is clearer and Approach 2 
achieves higher classification results. 
Thus the difference between both ap
proaches is not so discrepant.

We have further conducted a regres-
sion and clustering analysis based on all 
the complexity measures obtained from 
the training data. For the regression anal-
ysis, we obtained a regression model that 
could accurately predict the test AUC 
based solely on the complexity measure 
of the corresponding training parti-
tions (R2 of 0.72), where the highest 

values of the coefficient of determina-
tion were obtained for SMOTE TL+  
(0.807), MWMOTE (0.798) and 
SMOTE ENN+  (0.795). The cluster-
ing analysis (using k-means clustering) 
produced a division where the top 70 
datasets with the best test AUC results 
are grouped, the majority are produced 
with MWMOTE, SMOTE TL+  and 
SMOTE ENN.+  These results are de
tailed in the extended version of the 
paper (https://eden.dei.uc.pt/~pha/Long-
version-CIM.pdf  ).

C. Analysis of Oversampling 
Algorithms: Approach 2
After determining the most suitable CV 
scheme in imbalanced scenarios (CV 
during oversampling – Approach 2), we 
focus on analyzing the most appropriate 
oversampling methods for imbalanced 
contexts. To that end, three different 
strategies were considered. In the first 

strategy, we analyze the average test 
AUC values including all classifiers 
(Strategy 1). In the second strategy, we 
rank the AUC values by the oversam-
pling technique, for each classifier. Then, 
the average rank is computed for each 
oversampling technique (Strategy 2). 
Finally, the third strategy considers the 
ranking of AUC values by oversampling 
technique, for each classifier and dataset. 
Then, the average rank is computed for 
each oversampling technique (Strategy 3). 
The results of each strategy are sum-
marised in Table IV.

Table IV shows that all the imple-
mented techniques are better than using 
the original dataset without any type of 
processing (Baseline). Also, all considered  
strategies output the same set of win-
ners, SMOTE TL,+  SMOTE ,ENN+   
MWMOTE and SMOTE, although 
their ranks may vary. SMOTE TL,+  
followed by MWMOTE, are considered 

1.00

0.95

0.90

0.85

0.80

0.75
1.00

0.95

0.90

0.85

0.80

0.75

gl
as

s5
gl

as
s_

0_
6_

vs
_5

ye
as

t_
0_

5_
6_

7_
9_

vs
_4

ec
ol

i_
0_

1_
vs

_2
_3

_5
ve

hi
cl

e0
ec

ol
i_

0_
3_

4_
7_

vs
_5

_6
ye

as
t_

2_
vs

_8
ye

as
t4

ec
ol

i_
0_

1_
4_

6_
vs

_5
cl

ev
el

an
d_

0_
vs

_4
ec

ol
i_

0_
1_

vs
_5

le
tte

r_
Z

gl
as

s4
gl

as
s_

0_
4_

vs
_5

pa
ge

_b
lo

ck
s_

1_
3_

vs
_4

ec
ol

i3
ye

as
t_

2_
vs

_4
ec

ol
i_

0_
3_

4_
6_

vs
_5

ec
ol

i_
0_

4_
6_

vs
_5

ec
ol

i_
0_

2_
3_

4_
vs

_5
ec

ol
i_

0_
3_

4_
vs

_5
ye

as
t_

0_
2_

5_
7_

9_
vs

_3
_6

_8
ec

ol
i_

0_
6_

7_
vs

_5
se

gm
en

t0
ec

ol
i2

gl
as

s_
0_

1_
6_

vs
_5

le
d7

di
gi

t_
0_

2_
4_

5_
6_

7_
8_

9_
vs

1
gl

as
s6

ab
al

on
e_

21
_v

s_
8

vo
w

el
0

ec
ol

i1
ye

as
t3

ec
ol

i4
gl

as
s_

0_
1_

2_
3_

vs
_4

_5
_6

w
is

co
ns

in
ne

w
th

yr
oi

d1
ye

as
t5

sh
ut

tle
_6

_v
s_

2_
3

ec
ol

i_
0_

vs
_1

de
rm

at
ol

og
y_

6
sh

ut
tle

_c
0_

vs
_c

4
iri

s0
ab

al
on

e_
3_

vs
_1

1

M
ea

n 
A

U
C

 T
es

t R
O

S
S

M
O

T
E

M
et

ho
ds

Dataset Ordered by F1 (Ascending)

Approach 1 2

Figure 5 Differences between test AUCs of Approach 1 and Approach 2: datasets are ordered by their original F1 complexity measure (highest 
discriminative power among all features). Due to space restrictions, only the datasets with highest F1 values are represented, although a com-
plete analysis is performed in the extended version of this paper.



72    IEEE Computational intelligence magazine | November 2018

the best oversampling methods. The same 
is true for the worst oversampling tech-
niques, where CBO Random,+  SPI-
DER, SPIDER2 and ROS are found on 
the bottom positions. In light of these 
results, we herein provide a detailed discus-
sion on the intrinsic characteristics and 
behavior of the different oversampling 
methods used. We compare each method 
in what concerns their inner procedure 
and how they are able to address the datas-
ets’ complexity and improve the classifica-
tion results, also highlighting their main 
advantages and disadvantages.

1) ROS and SMOTE
ROS is the simplest of the oversampling 
techniques: a random subset of minority 
examples is replicated until the desired 
balance is reached. Nevertheless, this 
technique is subjected to overfitting due 
to the replication (creation of exact cop-
ies) of minority examples. The fact that 
ROS creates exact copies of existing 
examples, leads to a generation of very 
similar partitions in Approach 1 (and 
consequent overoptimism), while in 
Approach 2, as explained in Fig. 3, ROS 
is mostly subjected to overfitting. This is 

also supported by Fig. 4, where ROS is 
among the best methods in Approach 1 
(between 0.938 and 0.952), while for 
Approach 2 it provides the worst AUC 
results (between 0.848 and 0.857).

SMOTE smooths the problem of 
creating exact copies of existing minori-
ty examples by creating synthetic minor-
ity instances using the k-neighborhood 
of minority examples. However, the 
minority class is augmented without 
considering the structure of data: all 
minority examples have the same proba-
bility of being oversampled, regardless of 
their neighborhood, which leads to the 
following issues [7, 24, 40]:

❏❏ By considering a neighborhood 
composed only of minority exam-
ples, the new synthetic examples may 
be generated in overlapping areas 
(problem of overgeneralization);

❏❏ Since no distinction between minor-
ity examples is performed (e.g. by 
evaluating their majority neighbor-
hood), SMOTE-like methods can 
also augment noise regions, by overs-
ampling noisy examples (minority 
examples surrounded by majority 
examples, that are most likely noise).

Nevertheless, it seems that the ability of 
SMOTE to generate larger decision bound-
aries is still a major strength, even with its 
susceptibilities. In fact, SMOTE is found 
among the best oversampling methods, as 
shown in Fig. 4, which justifies why it is a 
renowned oversampling method, widely 
used in several research areas [40, 41].

2) SMOTE + TL and SMOTE + ENN
SMOTE TL+  and SMOTE ENN+  
combine oversampling with a cleaning 
procedure that alleviates SMOTE’s prob-
lem of overgeneralization: they are able 
to remove examples that lie on overlap-
ping regions (as detailed in Section II-A). 
However, since SMOTE is applied prior 
to the cleaning procedure, some of the 
same issues from SMOTE remain:

❏❏ All minority examples have the same 
probability of being oversampled, 
causing some unnecessary (“safe”) 
examples to be oversampled;

❏❏ Noise minority regions could be aug-
mented and remain after the cleaning 
procedure: after oversampling, they 
may not be identified by Tomek Links 
or ENN as examples to remove, since 
their neighborhood is changed.

Table IV Oversampling methods (plus Baseline) ordered by performance, according to each tested strategy.

Strategy 

Rank 1 2 3

1st SMOTE+TL (0.871 ± 0.052) SMOTE (3.000 ± 1.265) SMOTE+TL (6.535 ± 4.094) 

2nd MWMOTE (0.871 ± 0.053) SMOTE+TL (3.167 ± 1.941) MWMOTE (7.199 ± 4.332) 

3rd SMOTE (0.868 ± 0.054) MWMOTE (4.333 ± 4.844) SMOTE+ENN (7.201 ± 4.072)

4th SMOTE+ENN (0.867 ± 0.054) SMOTE+ENN (5.000 ± 2.828) SMOTE (7.222 ± 3.460) 

5th AHC (0.865 ± 0.055) AHC (6.000 ± 2.280) ADOMS (7.606 ± 4.195) 

6th ADOMS (0.864 ± 0.057) ADOMS (7.000 ± 2.000) AHC (8.088 ± 3.817) 

7th ADASYN (0.862 ± 0.059) ADASYN (8.000 ± 2.098) ADASYN (8.215 ± 4.223) 

8th CBO+SMOTE (0.860 ± 0.058) SL-SMOTE (8.000 ± 6.753) SL-SMOTE (8.411 ± 4.075) 

9th B-SMOTE1 (0.858 ± 0.060) CBO+SMOTE (9.333 ± 5.317) B-SMOTE1 (8.743 ± 4.119) 

10th B-SMOTE2 (0.858 ± 0.060) ROS (9.833 ± 5.076) B-SMOTE2 (8.743 ± 4.119) 

11th SL-SMOTE (0.857 ± 0.061) B-SMOTE1 (10.667 ± 1.966) CBO+SMOTE (8.745 ± 4.475)

12th SPIDER (0.856 ± 0.059) B-SMOTE2 (10.667 ± 1.966) ROS (9.019 ± 4.034) 

13th ROS (0.855 ± 0.063) SPIDER (11.000 ± 1.673) SPIDER (9.412 ± 4.665) 

14th SPIDER2 (0.855 ± 0.059) SPIDER2 (11.833 ± 2.137) SPIDER2 (9.569 ± 4.764) 

15th CBO+Random (0.849 ± 0.063) CBO+Random (13.500 ± 2.811) CBO+Random (9.821 ± 4.419)

16th Baseline (0.848 ± 0.066) Baseline (13.667 ± 3.830) Baseline (11.471 ± 4.981) 

B and SL are equivalent to Borderline and Safe-Level, respectively.
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Nevertheless, what is true for noise 
regions, is also true for small disjuncts. 
SMOTE TL+  and SMOTE ,ENN+  
by applying SMOTE as a first step, may 
be inflating unnecessary noise regions, 
but may also be inflating important, 
underrepresented, minority points. Over-
all, our results show that combining 
SMOTE with these cleaning methods 
turns out to be a superior approach 
than most (Table IV): SMOTE creates 
larger and less specific decision bound-
aries, that are afterwards simplified by 
Tomek Links and ENN by removing 
several borderline examples while also 
alleviating the issue of small disjuncts. 
However, some caution must be taken 
regarding the cleaning procedure: as dis-
cussed from Table III, for some datasets, 
an excessive cleaning may be the cause 
of overfitting.

3) CBO + Random and 
CBO + SMOTE
CBO was first thought as a way of 
handling both the between-class imbal-
ance as well as the within-class imbal-
ance (small disjuncts). CBO is able to 
attend to the structure of data by per-
forming clustering on both classes indi-
vidually (both minority and majority 
example are oversampled). Neverthe-
less, CBO needs a procedure for the 
generation of new examples, and each 
has its hitches:

❏❏ CBO + Random is more prone to 
overfitting: since random oversam-
pling is performed within clusters, 
the probability that similar instances 
are oversampled more often is even 
greater than for ROS alone, as dis-
cussed in Fig. 3 and Table III;

❏❏ CBO + SMOTE eases the problem 
of overgeneralization given that 
SMOTE is performed within clus-
ters; however, it no longer takes 
advantage of SMOTE’s ability to cre-
ate larger decision regions, which 
explains why its performance is 
considerably lower than SMOTE’s 
(Table IV): applying SMOTE within 
clusters increases the probability that 
similar instances are generated, which 
can also result in overfitting, as dis-
cussed from Table III.

Finally, for both techniques, the defi-
nition of the most appropriate number 
of clusters is a problem. In this work, to 
find the optimal k  number of clusters 
for each class, we have used three evalu-
ation criteria: Calinski-Harabasz [42], 
Davies-Bouldin [43] and Silhouette [44], 
and a range of , ..., .k 2 20=  Our CBO 
computes for each criterion five times 
and extracts the mode of these five runs. 
Finally, after determining the optimal k 
according to each criterion, the mode is 
computed again to obtain the final opti-
mal k  for a given class.

4) Borderline-SMOTE and ADASYN
Defining a taxonomy of minority ex
amples (noise, safe and danger) allows 
Borderline-SMOTE to operate only on 
the examples of interest: the synthetic 
minority examples will be created in a 
SMOTE-like fashion, along the line 
that  joins each danger example to its 
k   nearest minority neighbors, thus 
strengthening the borderline examples. 
Nevertheless, as Borderline-SMOTE 
uses the same procedure as SMOTE to 
oversample minority examples, it may 
suffer from the same issues mentioned 
above. Additionally, another problem 
with Borderline-SMOTE technique is 
in the way danger/borderline examples 
are identified (see Section II-A): in 
some contexts, the kk m 22 $l  cri-
terion may fail, and in those cases there 
is no oversampling in important regions 
near the decision boundary, which will 
prejudice the classification task [24], as 
discussed in Table III. We assume that 
this issue may affect some of the datas-
ets in our study, since that, although 
Borderline-SMOTE aims to provide 
a more clear decision boundary, it does 
not figure among the best approach-
es (Table IV).

ADASYN considers the majority 
neighborhood of the minority examples 

to guide the oversampling procedure: 
the minority examples are assigned dif-
ferent weights according to the number 
of majority examples in their neighbor-
hood. Adaptively assigning weights 
to the minority examples is a way to 
smooth the above-mentioned issues of 
Borderline-SMOTE; however, the defi-
nition of parameters for weight assign-
ment may be inappropriate to correctly 
distinguish the importance of minority 
examples for classification. As men-
tioned in Section II-A, the weight of 
each minority example is proportional 
to the number of majority examples in 
its k-neighborhood, which causes two 
main issues [24]:

❏❏ ADASYN may oversample unneces-
sary noisy examples: noisy examples 
are typically surrounded by the ma
jority class, and therefore their weight 
will be high;

❏❏ ADASYN may fail to oversample 
important minority examples close 
to the decision boundary, which is 
the most important concept to learn, 
if all their k-nearest neighbors are 
from the minority class.
Considering different weights for 

different minority examples is a way of 
defining the structure of minority data 
(although ignoring the structure of 
majority data). If additionally, the criteri-
on to define those weights fails for some 
datasets, ADASYN loses its main advan-
tage. This is consistent with the results 
provided in Table IV, where ADASYN 
is found in the 7th position, slightly 
above the middle of the table, although 
far from the top winners.

5) Safe-Level-SMOTE and ADOMS
Safe-Level-SMOTE also considers a 
weighted scheme to oversample the 
minority examples in safe regions. The 
weight assignment is more sophisticated 
than ADASYN’s, since that rather than 

MWMOTE is one of the top approaches, outstanding  
in dealing with several difficulty factors that arise in  
real-world datasets, namely overlapping, noisy data  
and small disjuncts.
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looking only to the majority neigh-
borhood of each minority example, 
Safe-Level-SMOTE also considers the 
structure of minority data points: the 
weights defined by slratio  allow Safe-Lev-
el-SMOTE to place new instances near 
those considering “safer”, easing the 
problem of small disjuncts while avoid-
ing the augmentation of noise regions. 
However, for specific scenarios, Safe-
Level-SMOTE may generate inconsis-
tent examples [7]: if a minority example 
is an outlier, inside a well-defined major-
ity cluster, then its slratio  will be 0, caus-
ing the gap for SMOTE synthetization 
to be 1, thus creating a new minority 
instance in the exact location of a major-
ity point. This may explain its suscepti-
bility to overfitting (Table III) and its 
poor performance (Table IV).

Rather than placing synthetic exam-
ples along the line between a minority 
example and one of its k minority 
neighbors (as SMOTE), ADOMS con-
siders the local minority distribution 
along the example to oversample, 
through the computation of the first 
principal component of the defined 
k-neighborhood (Section II-A). There-
fore, ADOMS takes advantage of 
SMOTE’s ability to define larger deci-
sion regions, while considering the local 
structure. However, ADOMS seems to 
fall behind SMOTE in the three con-
sidered strategies from Table  IV: we 
hypothesize that some of the instances 
placed by ADOMS create more overlap-
ping than SMOTE’s: SMOTE generates 
instances along a line joining two 
minority instances, yet ADOMS may 
place its instances in sparser projections 
[21]. Since, as in SMOTE, the distribu-
tion of majority examples is not consid-
ered, the generation procedure might 
not be appropriate for all scenarios.

6) SPIDER and SPIDER2
SPIDER combines the local-over
sampling of noisy, difficult, minority 
examples with a cleaning procedure that 
removes (or relabels) noisy majority 
examples. The original SPIDER algo-
rithm processed both minority and 
majority examples at the same time, 
sometimes severely modifying the 

majority class. To address this issue, a new 
version was proposed, SPIDER2, that 
alleviates the degradation of the minority 
class by processing minority and majori-
ty examples separately. The major issues 
of these methods are as follows:

❏❏ The process that leads to the amplifi-
cation of minority examples does not 
distinguish between borderline or 
noisy examples (if they are “not-
safe”, they are all considered “noise”). 
Therefore, these “unsafe” minority 
examples are all given the same 
importance to classification: SPI-
DER/SPIDER2 can either be overs-
ampling difficult examples so that 
they are not misclassified, but at the 
same time, they can be augmenting 
undesired noise regions;

❏❏ Both methods perform replication of 
examples rather than synthetization, 
which adds no new information;

❏❏ When “r e l a b e l i n g ” is chosen, 
SPIDER/SPIDER2 perform an 
oversampling procedure similar to 
SMOTE, except that instead of gen-
erating new instances in the neigh-
borhood of minority examples, it 
relabels their majority neighbors: 
however, relabeling examples might 
not be an appropriate approach in 
some domains.
Although SPIDER and SPIDER2 aim 

to define a taxonomy of minority exam-
ples, they do not distinguish between 
two important minor ity concepts, 
“borderline” and “noisy”, addressing 
them as equals. Also, the fact that these 
methods consider replication of existing 
examples rather than the synthetization 
of new ones is surely responsible for 
their lower positions on Table IV, along 
similar methods with the same inner 
procedure (CBO+Random and ROS). 
Finally, they are the only methods for 
which it is not possible to establish the 
amount of oversampling, which, in this 
work, has been established to accom-
plish a perfect balance in the training 
sets (50%-50% distribution). Since the 
remaining methods were optimised to 
achieve perfect balance, it was expected 
that SPIDER/SPIDER2 might provide 
somewhat erratic results, as discussed in 
Section V-B.

7) AHC and MWMOTE
Through clustering, AHC is able to 
consider the structure of both minority 
and majority classes, which is a great 
advantage over most oversampling 
algorithms that focus mostly on local 
properties rather than the whole data 
structure. Also, specifying the number of 
clusters is not an issue, since all levels of 
the resulting dendrograms are consid-
ered. However, this originates its major 
disadvantage: the process becomes very 
computationally expensive. AHC’s abili-
ty to take into account the structure of 
data seems to be one of the reasons why 
it figures among the best approaches 
(Table IV), which is also confirmed 
in similar approaches (e.g. ADASYN, 
MWMOTE).

As d i s cu s s ed  in Sec t ion II-A, 
MWMOTE is the most complete meth-
od, and its inner procedure is able to 
surpass most issues explained above. 
MWMOTE aims to provide i) an 
improved way of selecting the minority 
examples for oversampling, by being more 
meticulous on the way the importance of 
minority examples for classification is 
defined and ii) an improved way of gener-
ating new synthetic examples, avoiding 
the issues of SMOTE-based synthesiza-
tion. To that end, MWMOTE considers 
filtering, a weighted scheme based on a 
taxonomy of minority examples, and a 
SMOTE-like cluster-based synthesization 
of examples:

❏❏ MWMOTE starts by filtering the ini-
tial minority set to find the examples 
that are surrounded by the majority 
class, thus avoiding that noisy points 
are oversampled;

❏❏ Then, MWMOTE defines the im
portance of each minority example 
for classification, taking into account 
three main factors:
i)	 minority examples closer to the 

decision boundary should have a 
higher weight than those farther 
from it;

ii)	 minority examples within sparse 
minority clusters should have a 
higher weight than those on 
dense minority clusters (which 
alleviates the problem of small 
disjuncts);
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iii)	 minority examples closer to a 
dense majority cluster should 
have a higher weight than those 
closer to a sparse majority cluster.

iv)	 Finally, MWMOTE reduces the 
issues of SMOTE-like synthe-
sization by considering a cluster-
based oversampling approach: 
the generation of new minority 
examples is performed using 
only minority neighbors of the 
same clusters.

By combining strong features of other 
algorithms (filtering, clustering, adaptive 
weighting), MWMOTE performs a 
more guided oversampling procedure, 
that considers not only the distribution of 
majority examples around minority 
examples to define their importance, but 
also the structure of minority and major-
ity examples (through clustering). This 
behavior is what makes MWMOTE one 
of the top approaches, and outstanding in 
dealing with several difficulty factors that 
arise in real-world datasets [45], namely 
overlapping (through filtering), noisy data 
(through a weighting scheme) and small 
disjuncts (through clustering). In the 
extended version of this paper (https://
eden.dei.uc.pt/~pha/Long-version-CIM 
.pdf  ), readers may find a comprehensive 
table that resumes the main characteristics 
of the oversampling algorithms imple-
mented in this work. The key factors that 
distinguish algorithms from each other 
are presented in a synthesised way and 
their greatest advantages and disadvan-
tages are highlighted.

Taking into account the characteris-
tics of the inner procedure of each 
method, and in light of the performance 
results discussed in the previous sections, 
it seems that the best oversampling 
methods are those that combine three 
main characteristics:
1)	Cluster-based oversampling, so that 

the structure/distribution of both 
the minority and majority examples 
is considered: this approach seems to 
be superior to considering only the 
majority neighborhood of individual 
minority examples or filtering out 
some minority/majority examples;

2)	Adaptive weighting of minority 
examples: defining a proper taxono-

my of minority examples (borderline, 
safe, noise, and rare/small disjuncts) is 
crucial so that the importance of each 
example for classification is properly 
addressed: more important examples 
should be oversampled more often;

3)	Cleaning procedures, to overcome 
some issues that rise naturally during 
oversampling, namely the generation 
of synthetic examples in overlap-
ping areas.

VI. Conclusions and Future Work
The goal of this work was essentially 
threefold:
1)	To emphasize the risk of overopti-

mism related to the joint use of CV 
and oversampling, extending the 
work of Blagus and Lusa [13];

2)	To distinguish the problem of over-
optimism from the overfitting prob-
lem and study the influence of the 
datasets’ complexity generated by 
oversampling algorithms on the 
classification task;

3)	To determine the performance of 
the state-of-the-art oversampling 
strategies, in order to provide some 
insight on the ones that reveal the 
best behavior.
Attending to these sub-objectives, 

there are three main conclusions to 
be derived:
i)	 The cross-validation procedure after 

the oversampling (Approach 1) leads 
to overoptimistic results and makes 
this approach inappropriate for imbal-
anced domains. Approach 2 – per-
forming oversampling in the training 
sets at each iteration of a cross-valida-
tion procedure – is the correct way of 
validating results in imbalanced sce-
narios. The overoptimism is not re
lated to the data’s sample size or 
imbalance ratio, but rather to the 
complexity of the prediction task, 
where the maximum discriminative 

power of all features (complexity 
measure F1) seems to be a good pre-
dictor of this effect;

ii)	 While Overoptimism is g reatly 
associated with inappropriate valida-
tion setups, Overfitting (significant 
differences in performance bet
ween training and test sets) is mostly 
related to the oversampling algo-
rithm used, where algorithms that 
create exact replicas of existing pat-
terns are the most prejudicial (e.g. 
CBO+Random). The difference in 
complexity of the training and test 
sets is lower in Approach 1 and is 
the rational behind its overoptimis-
tic behavior: the training and test 
sets have a similar structure, that is, 
they are balanced and might contain 
exact replicas or similar data points 
to the training data;

iii)	 Among the implemented oversam-
pling methods, SMOTE+TL and 
MWMOTE achieve the best results, 
with average test AUC values of 
0.871 (considering all classifiers). 
These techniques change the over-
lapping areas in the data and increase 
their discriminative power. Overall, 
the best oversampling techniques 
possess three key characteristics: use 
of cleaning procedures, cluster-based 
synthetization of examples and adap-
tive weighting of minority examples.
Furthermore, we have performed a 

regression and clustering analysis which 
confirmed that the complexity produced 
by the oversampling algorithms is relat-
ed to the classification results, in a 
quasi-linear way. As concluding remarks, 
we would like to emphasize some lessons 
learned which could be beneficial to new 
researchers in the field:

❏❏ Oversampling algorithms have distinc-
tive inner procedures that are better 
suited to particular characteristics of 
data (e.g. CBO inflates small disjuncts, 

The best oversampling techniques possess three key 
characteristics: use of cleaning procedures, cluster-based 
synthetization of examples and adaptive weighting of 
minority examples.
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SMOTE-TL and SMOTE-ENN deal 
with class overlapping, Safe-Level-
SMOTE and Borderline-SMOTE 
prioritize safe and borderline con-
cepts in data). Thus being, analyzing 
data complexity measures may pro-
vide useful insights to guide the choice 
of appropriate oversampling methods;

❏❏ Stratified CV is the state-of-the-art vali-
dation approach for performance eval-
uation and should be carefully designed 
in imbalanced domains. Nevertheless, 
even a correct CV may cause parti-
tion-induced covariate shift during the 
learning stage [40], which can lead to 
loss in performance or under-estima-
tion of results. A promising approach to 
surpass the issues of dataset shift is the 
Distribution Optimally Balanced strati-
fied cross-validation (DOB-SCV) [46], 
which is worthy of investigation in 
future works in the field.
As future work, several undersampling 

and other new oversampling techniques 
could be included in the analysis, in order 
to determine the complexity changes 
they make in the original datasets. In this 
context, the novel R package “imbal-
ance” could be of interest, given that it 
includes the implementation of recent 
resampling algorithms in the literature 
[47]. Also, one could focus on specific 
sub-problems of imbalanced data (e.g. 
small disjuncts, overlapping, lack of data) 
and study their identification in multidi-
mensional data and/or ways to surpass 
them using preprocessing techniques. 
Finally, future work could also consider 
an extension of this research for datasets 
with higher dimensionality.
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