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a b s t r a c t 

In missing data contexts, k-nearest neighbours imputation has proven beneficial since it takes advantage 

of the similarity between patterns to replace missing values. When dealing with heterogeneous data, 

researchers traditionally apply the HEOM distance, that handles continuous, nominal and missing data. 

Although other heterogeneous distances have been proposed, they have not yet been investigated and 

compared for k-nearest neighbours imputation. In this work, we study the effect of several heterogeneous 

distances on k-nearest neighbours imputation on a large benchmark of publicly-available datasets. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Dealing with Missing Data (MD) is crucial since absent obser-

ations compromise the reliability of models. Among several ap-

roaches, data imputation stands out as a way of preserving the

xisting information while replacing the absent with plausible val-

es. k-nearest neighbours (KNN) imputation is a popular data im-

utation technique due to several properties: it takes advantage

f the similarity between patterns to produce accurate estimates

1] , it is a non-parametric method, which does not require any as-

umptions on the data or missing mechanism [2] , it imputes ab-

ent information with already-occurring values in data ( k = 1), and

as proven to preserve the data distribution [3] . Although KNN has

roven to be an efficient approach across different domains, it is

argely dependent on its underlying distance function. By default,

his technique uses the Euclidean distance, although it only applies
hen data is continuous. 
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In the literature, there are other distance functions that handle

oth continuous and nominal data (heterogeneous distance func-

ions) and, in addition, deal with missing observations. Traditional

istance functions include HEOM and HVDM [1] which are fre-

uently applied in heterogeneous data contexts, such as healthcare

omains [4–6] . Although other heterogeneous distances have been

roposed, they have not yet been investigated for imputation pur-

oses. 

In this work, we perform a comprehensive search for hetero-

eneous distance functions that handle missing data and couple

hem with KNN for imputation. We study their behaviour for in-

reasing percentages of missing data (5%, 10%, 20%, and 30%), aim-

ng to answer two main research questions: 

• Do distance metrics significantly affect KNN imputation? 
• Is there a distance more beneficial for some datasets? 

Other studies have investigated the influence of KNN or KNN-

ased algorithms on imputation and classification problems [7–

] , although considering only the Euclidean distance or continuous

eatures, poorly handling nominal features (e.g., applying the same

istance as for continuous features) or neglecting missing data (us-

https://doi.org/10.1016/j.patrec.2020.05.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2020.05.032&domain=pdf
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112 M.S. Santos, P.H. Abreu and S. Wilk et al. / Pattern Recognition Letters 136 (2020) 111–119 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T  

c  

X  

t  

s

d  

 

b

d  

2

H

 

a  

[  

f  

E  

R

d  

2

 

v  

f

n  

o

d  

 

2

 

f  

w  

i

S  

a  

m  

m  

fi  

v

s  

 

m  

s

s  
ing complete datasets). However, as increasing research has come

to acknowledge, handling heterogeneous data poses a more com-

plex challenge for machine learning algorithms and should be ad-

dressed adequately [10] . Therefore, the main difference with our

study is that we address all problems simultaneously, handling

heterogeneous data with missing values with appropriate hetero-

geneous distance functions that account for missing observations.

To the authors knowledge, no study has yet investigated the im-

pact of different distance functions on the imputation of heteroge-

neous data and its effect on classification results, which constitutes

the novelty and contribution of this work. Furthermore, we explore

distance measures never before studied for imputation purposes,

such as SIMDIST and MDE, extend MDE to handle nominal data

and explore further HEOM and HVDM redefinitions, which consti-

tute additional contributions. Additionally, this study may also pro-

vide interesting insights for general applications of heterogeneous

distances with missing data such as classification algorithms op-

erating with distances among patterns (e.g., instance-based learn-

ing, neural networks with radial basis functions, self-organising

maps [11] ), graph mining and clustering applications [12,13] , and

other fields in Pattern Recognition (e.g., Imbalanced Data research),

where a plethora of oversampling approaches rely on the compu-

tation of distances to generate new synthetic data. 

2. Heterogeneous distance functions for missing data 

All distance functions considered in this work measure the dis-

tance between two patterns x A and x B through a sum of their in-

dividual distances in each j -th feature, d j ( x Aj , x Bj ) as D (x A , x B ) =√ ∑ p 
j=1 

d j (x A j , x B j ) 
2 . However, they differ on the computation of

individual d j distances, as explained in what follows. 

2.1. HEOM: Heterogeneous Euclidean-Overlap Metric 

The Heterogeneous Euclidean-Overlap Metric (HEOM) distance

[1] , considers the normalised euclidean distance for continuous

features, d N ( Eq. (2) ), and an overlap metric for nominal features,

d O ( Eq. (3) ). However, d O and d N are only computed if both in-

put values, x Aj and x Bj are available; otherwise, if either of them is

missing, d j ( x Aj , x Bj ) is defined as 1. 

d j (x A j , x B j ) = 

⎧ ⎨ 

⎩ 

1 , if j is missing in x A j or x B j , 

d O , if j is a nominal feature , 

d N , if j is a continuous feature 

(1)

d N (x A j , x B j ) = 

∣∣x A j − x B j 

∣∣
max (x j ) − min (x j ) 

(2)

d O (x A j , x B j ) = 

{
0 , if x A j = x B j 

1 , otherwise 
(3)

2.2. HVDM: Heterogeneous Value Difference Metric 

Similarly to HEOM, the Heterogeneous Value Difference Metric

(HVDM) [1] , defines d j computation depending on the type of j :

if both x Aj and x Bj are observed ( Eq. (4) ), d vdm 

is used for nom-

inal features ( Eq. (5) ) while d diff is used for continuous features

( Eq. (6) ). 

d j (x A j , x B j ) = 

⎧ ⎨ 

⎩ 

1 , if j is missing in x A j or x B j , 

d v dm 

, if j is a nominal feature , 

d di f f , if j is a continuous feature 

(4)

The computation of d vdm 

, as shown in (5) , requires information

on the class targets of each pattern x , herein referred to as c .
i i 
hus, d vdm 

is computed as a sum over all C , the number of possible

lasses in the problem domain. N x A j ,c is the number of patterns in

 that have value x Aj in feature j and class target c , while N x A j 
is

he number of patterns in X that have value x Aj in feature j (the

ame is derived for x Bj ). 

 v dm 

(x A j , x B j ) = 

√ 

C ∑ 

c=1 

∣∣∣∣N x A j ,c 

N x A j 

− N x B j ,c 

N x B j 

∣∣∣∣
2 

(5)

In turn, similarly to HEOM, the continuous features are scaled

y d diff, considering 4 standard deviations ( σ ) of x j . 

 di f f (x A j , x B j ) = 

∣∣x A j − x B j 

∣∣
4 σx j 

(6)

.3. HEOM-REDEF and HVDM-REDEF: redefinitions of HEOM and 

VDM 

Juhola and Laurikkala propose a redefinition for both HEOM

nd HVDM in what concerns the treatment of missing values

14] . Missing values are considered as “special values” and there-

ore HEOM and HVDM should be adjusted accordingly, following

q. (7) . In this work, we refer to these two redefinitions as HEOM-

EDEF and HVDM-REDEF. 

 j (x A j , x B j ) = 

{
1 , if j is missing only on x A j or x B j , 

0 , if j is missing in both x A j and x B j 

(7)

.4. HVDM-SPECIAL: an extension of HVDM 

Inspired by the idea of considering a missing value as a “special

alue” [15] , we consider another redefinition for HVDM, herein re-

erred to HVDM-SPECIAL. Missing values are considered an “extra”

ominal category and d vdm 

is applied in the case that only x Aj or

nly x Bj are missing and j is nominal ( Eq. (8) ). 

 j (x A j , x B j ) = 

⎧ ⎨ 

⎩ 

0 , if x A j and x B j are both missing , 

1 , if x A j or x B j are missing and j is continuous ,

d v dm 

, if x A j or x B j are missing and j is nominal 

(8)

.5. SIMDIST: similarity for heterogeneous data 

Belanche and Hernandéz proposed an heterogeneous similarity

unction as a way to incorporate prior knowledge into a neural net-

ork [16] , as defined by Eq. (9) , where S ABj represents the similar-

ty between two patterns according to feature j . 

 AB j = 

{ 

1 
2 
, if either x A j or x B j are missing , 

z 

(
s AB j 

s j 

)
, if both x A j and x B j are observed 

(9)

s ABj is an intermediate similarity distance between x Aj and x Bj 

nd is determined according to the type of j; s j represents the

ean similarity among all patterns according to j and z is a nor-

alisation function, z(a ) = 

a 
a +1 . For nominal features, s ABj is de-

ned by Eq. (10) , where P lj in the fraction of patterns that takes

alue x lj for feature j . 

 AB j = 

{
0 , if x A j � = x B j , 

1 − P l j , if x A j = x B j 

(10)

For continuous features, s ABj is determined by Eq. (11) , where

ax( x j ) and min( x j ) are the maximum and minimum values ob-

erved in j , respectively. 

 AB j = 1 − | x A j − x B j | 
max (x j ) − min (x j ) 

(11)
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In Eq. (9) , S ABj is assumed to be 1 
2 when x Aj or x Bj are missing

hich is the equivalent of replacing the missing similarity between

 Aj or x Bj by the mean similarities of all patterns according to j .

astly, the individual similarities S ABj are transformed to individual

istances D ABj = 1 - S ABj and aggregated to obtain D ( x A , x B ). 

.6. Mean Euclidean Distance 

Mean Euclidean Distance ( MD E ) was proposed to handle incom-

lete data in clustering algorithms [17] . Three possibilities for com-

aring two values of a given attribute j are given. When both val-

es are known, their distance is defined as the standard euclidean

istance ( Eq. (12) ). When either x Aj or x Bj are missing, the MD E 

s approximated as the mean distance of each value of x j to the

bserved value, as defined by Eq. (13) ( x Aj is missing and x Bj is

bserved). Finally, when both x Aj and x Bj are missing, the MD E 

s approximated as the mean distance between all values of x j 
 Eq. (14) ). 

D E (x A j , x B j ) = (x A j − x B j ) 
2 (12)

D E (x A j , x B j ) = E 
(
(x − x B j ) 

2 
)

= 

∫ 
p(x )(x − x B j ) 

2 dx = (x B j − μx ) 
2 + σ 2 

x (13) 

D E (x A j , x B j ) = 

∫ ∫ 
p(x ) p(y )(x − y ) 2 d xd y 

= 

(
E(x ) − E(y ) 

)2 + σ 2 
x + σ 2 

y = 2 σ 2 
x (14) 

The original formulation of MD E is only established for contin-

ous features. To extend MD E for nominal features, we shall con-

ider the standard overlap distance, d O ( Eq. (3) ) and define a nom-

nal version of MD E , which we will refer to as MD O . When both

alues are known, MD O is the same as d O ( Eq. (3) ). When only one

alue is missing, MD O is computed as the mean distance between

ll elements in x j and the observed value, as shown in Eq. (15) ( x Aj 

s missing and x Bj is observed). If both values are missing, MD O 

s determined as the mean distance between all elements in x j 
 Eq. (16) ). Finally, D ( x A , x B ) is obtained assuming d j as MD E or

D O , depending on the feature type. Note that MD E ( x Aj , x Bj ) al-

eady corresponds to d j ( xA j , xB j ) 
2 ( Eqs. (12) to (14) ). Therefore, only

he MD O ( x Aj , x Bj ) component should be squared when performing

he aggregation. 

D O (x A j , x B j ) = 

∑ 

x 

p(x ) d O (x, x B j ) 

= 

∑ 

x � = x B j 

p(x ) = 1 − p(x B j ) (15) 

D O (x A j , x B j ) = 

∑ 

x 

∑ 

y 

p(x ) p(y ) d O (x, y ) 

= 

∑ 

x 

∑ 

x � = y 
p(x ) p(y ) = 1 −

∑ 

x 

p 2 (x ) (16) 

Fig. 1 presents the relationships of the distance functions con-

idered in this work. According to the status of xA j and xB j values

either only one of them is missing, both are known or both are

issing), and the type of j feature (either continuous or nominal),

he schema depicts the d j computation for each case. Each path

highlighted in different colours) presents the association between

he presence/absence of values and feature type and aggregates the

istances that perform the same computation of d j . 

. Experiments 

We started by collecting 61 complete and binary-classification

atasets from open-source repositories, as presented in Table 1 .

hese consider different sample sizes, number of features, type
f features (continuous and nominal) and imbalance ratios (IR).

hen, missing data is generated at 4 different rates (5, 10, 20

nd 30%) under a Missing Completely At Random (MCAR) mech-

nism [18] . Additionally, we guarantee that the same missing rate

as inserted in both classes and 30 runs are performed for each

ataset and missing rate (MR). The datasets with missing values

re then i) directly classified with Classification and Regression

rees (CART) model (Baseline approach) or ii) first imputed with

NN ( k = 1 ) and then classified with CART. For ii) 7 heterogeneous

istance functions were considered, as detailed in Section 2 . Fi-

ally, CART performance is evaluated using sensitivity, F-measure

F1) and G-mean, which are robust to the existing class imbal-

nce of the collected datasets, as this is a common difficulty fac-

or found in a huge variety of domains [19] . In sum, we have

onsidered 61 datasets ∗ 4 different missing rates ∗ 30 runs ∗ 7

istance functions for imputation + 61 datasets ∗ 4 missing rates

30 runs for the baseline. In what follows, experimental results

re evaluated overall, presenting the average classification results,

nd also performing a rank analysis, both considering all results

nd a detailed analysis by group (Continuous, Nominal and Other

atasets). 

. Results and discussion 

Here we study the effect of the distance function on the

-nearest neighbour imputation, aiming to address the research

uestions identified in the Introduction. 

.1. Do distance metrics significantly affect KNN imputation? 

Table 2 reports on the sensitivity, F1 and G-mean of CART clas-

ifier for 8 different methods: Baseline (with missing values) and

mputed with HEOM, HEOM-REDEF, HVDM, HVDM-REDEF, HVDM-

PECIAL, MDE and SIMDIST, for MRs of 5, 10, 20 and 30%. F1 and G-

ean are presented on the left-side of the table, whereas sensitiv-

ty is used to perform the ranking of methods (on the right). Both

trategy 1 and 2 report on the sensitivity results, yet they differ

n the computation of ranks. For Strategy 1, methods are ranked

ased on their average sensitivity: the results for all datasets are

veraged by method, and then the ranking is computed. For Strat-

gy 2, methods are first ranked for each dataset separately and the

verage rank is determined for each method. 

Starting with the average sensitivity, F1 and G-mean, the first

bservation is that all imputation techniques are preferable to the

lassification with missing values, i.e., the datasets imputed with

NN (for any distance metric) outperform the Baseline results.

lso, as the missing rate increases, so does the difference between

he Baseline and the imputation methods: sensitivity, F1 and G-

ean present average differences of 0.017, 0.0 05 and 0.0 08 for a

R of 5% and 0.119, 0.053 and 0.0 6 6 for 30%, respectively. Also,

he differences between distance metrics is more noticeable with

ncreasing missing rates: for a MR of 5% the performance results

re similar between methods, with a difference from the best to

orst method of 0.004, 0.003 and 0.002 (for sensitivity, F1 and G-

ean). For a MR of 30%, those differences increase to 0.036, 0.037

nd 0.029, respectively. 

Overall, SIMDIST, MDE, HEOM and HVDM appear to be the best

erforming distances, although SIMDIST and MDE assume more

rominent positions for higher missing rates (20% and 30%). In

urn, HEOM-REDEF and HVDM-REDEF appear frequently at the bot-

om positions. As previously discussed in Section 3 , the collected

atasets are imbalanced and therefore we focus on sensitivity re-

ults in the following analyses (considering the classification per-

ormance on the positive/minority cases) [19] . Furthermore, we

ely on Strategy 2 to analyse the sensitivity results more precisely

or each dataset. 
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Fig. 1. Relationships between the distance functions considered in this work. 
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The ranks presented in Strategy 2 are consistent with our pre-

vious analysis, yet better illustrate the differences between meth-

ods. To determine whether there were significant differences be-

tween the methods, we compared them using the Friedman rank

test. Under the null hypothesis, the different distances would as-

sume equal ranks, i.e., the methods would be equivalent. We com-

puted the F F statistic [20] for all missing rates – F F = {6.86, 8.73,

33.70, 35.22} for 5, 10, 20 and 30% – and compared it with the es-

tablished critical values for the F-distribution at a 5% significance

level, F (7 , 420) 0 . 05 = 2 . 03 . For all missing rates, the null hypoth-

esis was rejected and therefore we proceeded to post-hoc testing

(at a 5% significance level), computing the critical differences for

Nemenyi test ( CD n = 1 . 34 ) so that all methods are compared with

each other. For all missing rates, the difference between the rank

of the Baseline and the ranks of remaining methods is higher than

CD n , which reveals that all imputation methods are significantly

better than performing classification with incomplete data. Regard-

ing the remaining methods, we further analyse the results by miss-

ing rate. For a MR of 5% and 10%, the post-hoc did not detect any

significant differences between the methods (differences between

the best and worst performing methods was lower than CD n – 1.06

and 1.28 for 5% and 10%, respectively). In turn, for MRs of 20% and
0%, some methods proved to be significantly better than others.

or 20% and 30% missing rates, the difference between distance

anks is reported in Table 3 . 

The values respect to the difference between the ranks of each

ethod in the rows and the methods in the columns. Differences

or 20% are presented in the upper part of table, whereas differ-

nces for 30% are shown in the lower part of the table. Signifi-

ant differences (higher than CD n , > 1.34) are marked in bold,

xcept for the Baseline, since all methods proved to be signif-

cantly better. For both these missing rates, all distances were

ignificantly better than HEOM-REDEF and HVDM-REDEF (except

or HVDM-SPECIAL, that although achieving better results than

oth redefinitions, did not reach the CD n value). Additionally, MDE

nd SIMDIST were significantly better than HVDM-SPECIAL. Con-

idering the obtained results, it is interesting to observe that

EOM and HVDM are significantly better than their redefinitions,

s previously discussed from Table 2 . In turn, the experimental

ata was not sufficient to detect significant differences between

EOM/HVDM and HVDM-SPECIAL and although MDE and SIMDIST

ppear in the leading positions for MRs of 20% and 30%, the post-

oc was not enough to conclude on their superiority over HEOM or

VDM. 
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Table 1 

Characteristics of collected datasets. 

Dataset Size Features C/N IR Dataset Size Features C/N IR 

abalone 4174 8 (7/1) 1.89 ecoli_0_4_6_vs_5 203 6 (6/0) 9.15 

acute-inflammations-nephritis 120 6 (1/5) 1.4 ecoli_0_6_7_vs_3_5 222 7 (7/0) 9.09 

acute-inflammations-urinary 120 6 (1/5) 1.03 ecoli_0_6_7_vs_5 220 6 (6/0) 10 

alzheimer-v1 317 9 (7/2) 1.5 ecoli_0_vs_1 220 7 (7/0) 1.86 

arrhythmia 420 266 (205/61) 1.3 fertility-diagnosis 100 9 (2/7) 7.33 

autism-adolescent 98 19 (1/18) 1.72 haberman 306 3 (3/0) 2.78 

autism-adult 701 16 (1/15) 2.71 heart-statlog 270 13 (7/6) 1.25 

bc-coimbra 116 9 (9/0) 1.23 immunotherapy 90 7 (5/2) 3.74 

biomed 194 5 (5/0) 1.9 kala-azar 68 6 (5/1) 5.8 

breast-tissue-2c 106 9 (9/0) 4.05 kidney 158 24 (11/13) 2.67 

bupa 345 6 (5/1) 1.38 language-impairment-ENNI 377 61 (59/2) 3.9 

cleveland_0_vs_4 173 13 (13/0) 12.31 language-impairment-conti 118 60 (59/1) 5.21 

cryotherapy 90 6 (4/2) 1.14 language-impairment-gillam 667 61 (59/2) 2.92 

ctg-2c 2126 21 (21/0) 11.08 lung-cancer-v1 27 56 (0/56) 2 

dermatology-v2 182 34 (1/33) 1.56 lymphography-v1 142 18 (3/15) 1.33 

dermatology_6 358 34 (34/0) 16.9 new-thyroid-N-vs-HH 215 5 (5/0) 2.31 

diabetic-retinopathy 1151 19 (16/3) 1.13 newthyroid-v1 185 5 (5/0) 4.29 

ecoli 336 7 (7/0) 8.6 newthyroid-v3 180 5 (5/0) 5 

ecoli1 336 7 (7/0) 3.36 parkinson 195 22 (22/0) 3.06 

ecoli2 336 7 (7/0) 5.46 pima 768 8 (8/0) 1.87 

ecoli4 336 7 (7/0) 15.8 postoperative-SvsA 86 8 (1/7) 2.58 

ecoli_0_1_4_6_vs_5 280 6 (6/0) 13 relax 182 12 (12/0) 2.5 

ecoli_0_1_4_7_vs_2_3_5_6 336 7 (7/0) 10.59 saheart 462 9 (8/1) 1.89 

ecoli_0_1_4_7_vs_5_6 332 6 (6/0) 12.28 spectf 267 44 (44/0) 3.85 

ecoli_0_1_vs_2_3_5 244 7 (7/0) 9.17 thoracic 470 16 (3/13) 5.71 

ecoli_0_1_vs_5 240 6 (6/0) 11 thyroid_3_vs_2 703 21 (21/0) 18 

ecoli_0_2_3_4_vs_5 202 7 (7/0) 9.1 transfusion 748 4 (4/0) 3.2 

ecoli_0_2_6_7_vs_3_5 224 7 (7/0) 9.18 vertebral-2c 310 6 (6/0) 2.1 

ecoli_0_3_4_6_vs_5 205 7 (7/0) 9.25 wisconsin 683 9 (9/0) 1.86 

ecoli_0_3_4_7_vs_5_6 257 7 (7/0) 9.28 wpbc 198 32 (32/0) 3.21 

ecoli_0_3_4_vs_5 200 7 (7/0) 9 

C/N: Number of Continuous/Nominal features. 

Table 2 

CART performance results without imputation (Baseline) and with KNN imputation using several distances. 

MR Distance F1 GMEAN Rank Strategy 1 Strategy 2 

5% BASELINE 0.653 ± 0.240 0.724 ± 0.220 1ST SIMDIST (0.6603 ± 0.2367) SIMDIST (3.61 ± 1.96) 

HEOM 0.659 ± 0.237 0.731 ± 0.217 2ND HVDM (0.6589 ± 0.2379) HVDM (3.81 ± 1.95)) 

HEOM-REDEF 0.658 ± 0.235 0.732 ± 0.215 3RD HVDM-SPECIAL (0.6584 ± 0.2341) HVDM-SPECIAL (4.24 ± 1.94) 

HVDM 0.658 ± 0.238 0.731 ± 0.219 4TH HEOM (0.6584 ± 0.2370) HEOM (4.32 ± 2.25) 

HVDM-REDEF 0.657 ± 0.237 0.730 ± 0.218 5TH HEOM-REDEF (0.6576 ± 0.2341) HEOM-REDEF (4.54 ± 2.09) 

HVDM-SPECIAL 0.660 ± 0.235 0.732 ± 0.214 6TH MDE (0.6570 ± 0.2320) HVDM-REDEF (4.60 ± 2.01) 

MDE 0.659 ± 0.233 0.731 ± 0.213 7TH HVDM-REDEF (0.6565 ± 0.2365) MDE (4.67 ± 2.42) 

SIMDIST 0.660 ± 0.237 0.732 ± 0.218 8TH BASELINE (0.6413 ± 0.2385) BASELINE (6.20 ± 2.65) 

10% BASELINE 0.627 ± 0.236 0.699 ± 0.217 1ST SIMDIST (0.6430 ± 0.2357) SIMDIST (3.53 ± 2.15) 

HEOM 0.641 ± 0.235 0.716 ± 0.216 2ND HVDM (0.6403 ± 0.2341) HVDM (3.75 ± 1.99) 

HEOM-REDEF 0.638 ± 0.228 0.715 ± 0.209 3RD HEOM (0.6385 ± 0.2338) HEOM (3.94 ± 2.02) 

HVDM 0.643 ± 0.235 0.718 ± 0.215 4TH MDE (0.6378 ± 0.2301) MDE (4.40 ± 2.49) 

HVDM-REDEF 0.636 ± 0.233 0.713 ± 0.215 5TH HVDM-SPECIAL (0.6366 ± 0.2307) HVDM-SPECIAL (4.58 ± 1.72) 

HVDM-SPECIAL 0.638 ± 0.231 0.715 ± 0.210 6TH HEOM-REDEF (0.6363 ± 0.2276) HEOM-REDEF (4.63 ± 2.38) 

MDE 0.640 ± 0.233 0.716 ± 0.214 7TH HVDM-REDEF (0.6335 ± 0.2320) HVDM-REDEF (4.81 ± 1.69) 

SIMDIST 0.645 ± 0.236 0.720 ± 0.217 8TH BASELINE (0.6027 ± 0.2329) BASELINE (6.34 ± 2.53) 

20% BASELINE 0.563 ± 0.218 0.638 ± 0.204 1ST SIMDIST (0.6082 ± 0.2314) MDE (3.16 ± 1.83) 

HEOM 0.607 ± 0.228 0.689 ± 0.211 2ND HEOM (0.6048 ± 0.2279) SIMDIST (3.28 ± 2.18) 

HEOM-REDEF 0.587 ± 0.224 0.673 ± 0.206 3RD MDE (0.6047 ± 0.2238) HEOM (3.37 ± 1.91) 

HVDM 0.607 ± 0.230 0.688 ± 0.211 4TH HVDM (0.6047 ± 0.2284) HVDM (3.42 ± 1.86) 

HVDM-REDEF 0.591 ± 0.220 0.677 ± 0.202 5TH HVDM-SPECIAL (0.5933 ± 0.2239) HVDM-SPECIAL (4.63 ± 1.67) 

HVDM-SPECIAL 0.597 ± 0.224 0.681 ± 0.204 6TH HVDM-REDEF (0.5880 ± 0.2189) HVDM-REDEF (5.19 ± 1.53) 

MDE 0.608 ± 0.225 0.690 ± 0.207 7TH HEOM-REDEF (0.5837 ± 0.2222) HEOM-REDEF (5.76 ± 1.71) 

SIMDIST 0.612 ± 0.232 0.693 ± 0.213 8TH BASELINE (0.5101 ± 0.2034) BASELINE (7.20 ± 1.92) 

30% BASELINE 0.503 ± 0.204 0.580 ± 0.197 1ST MDE (0.5694 ± 0.2201) MDE (2.97 ± 1.97) 

HEOM 0.559 ± 0.224 0.650 ± 0.207 2ND SIMDIST (0.5682 ± 0.2286) SIMDIST (3.02 ± 1.99) 

HEOM-REDEF 0.537 ± 0.213 0.631 ± 0.197 3RD HVDM (0.5571 ± 0.2252) HVDM (3.49 ± 1.93) 

HVDM 0.561 ± 0.226 0.649 ± 0.210 4TH HEOM (0.5563 ± 0.2228) HEOM (3.79 ± 1.81) 

HVDM-REDEF 0.541 ± 0.214 0.634 ± 0.198 5TH HVDM-SPECIAL (0.5456 ± 0.2188) HVDM-SPECIAL (4.64 ± 1.76) 

HVDM-SPECIAL 0.547 ± 0.217 0.640 ± 0.198 6TH HVDM-REDEF (0.5375 ± 0.2142) HVDM-REDEF (5.18 ± 1.61) 

MDE 0.574 ± 0.221 0.660 ± 0.207 7TH HEOM-REDEF (0.5334 ± 0.2122) HEOM-REDEF (5.63 ± 1.64) 

SIMDIST 0.573 ± 0.229 0.659 ± 0.211 8TH BASELINE (0.4331 ± 0.1805) BASELINE (7.28 ± 1.82) 
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Table 3 

Differences between ranks for each comparison of distance metrics for 20% and 30%. Significant differences 

are marked in bold. 

BASELINE HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST 

BASELINE – 3.83 1.43 3.78 2.01 2.57 4.04 3.92 

HEOM −3.49 – −2.39 −0.05 −1.82 −1.26 0.21 0.09 

HEOM-R −1.65 1.84 – 2.34 0.57 1.13 2.61 2.48 

HVDM −3.79 −0.30 −2.14 – −1.77 −1.21 0.26 0.14 

HVDM-R −2.10 1.39 −0.45 1.69 – 0.56 2.03 1.91 

HVDM-S −2.64 0.85 −0.99 1.15 −0.54 – 1.48 1.35 

MDE −4.31 −0.82 −2.66 −0.52 −2.21 −1.67 – −0.12 

SIMDIST −4.25 −0.76 −2.61 −0.47 −2.16 −1.61 0.06 –

HEOM-R : HEOM-REDEF; HVDM-R : HVDM-REDEF; HVDM-S : HVDM-SPECIAL. 
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4.2. Is there a distance more beneficial for some datasets? 

To tailor our analysis to the characteristics of each dataset, we

divided the collected datasets into 3 groups on the basis of their

types of features. Then, the ranks of each distance are evaluated for

each group separately considering the highest percentage of miss-

ing data (30%), where differences between ranks were more notice-

able. Table 4 reports on these results, where the 3 main groups are

identified. Continuous Datasets consist entirely of datasets compris-

ing continuous features while Nominal Datasets consist of datasets

comprising predominantly nominal features. Among the collected

datasets, only one had entirely nominal features ( lung-cancer-v1 ),

although several others were mainly composed of nominal features

(comprising only 1, 2 or 3 continuous features). For this reason, we

have decided to include them in this group. The remaining datasets

were grouped in Other Datasets . This group contains heterogeneous

datasets (with both continuous and nominal features) and com-

prises datasets that include a somewhat representative amount of

each type of feature ( arrhythmia, heart-statlog, kidney ), although

the majority is predominantly continuous (we have left them out

of Continuous Datasets since there was a considerable amount of

datasets exclusively continuous). 

Similarly to the previous analysis, the F F statistic was computed

for all groups – F F = { 30 . 97 , 9 . 01 , 6 . 08 } for Group 1, 2 and 3, re-

spectively – and compared to the F-distribution at a 5% significance

level, F (7 , 252) 0 . 05 = 2 . 05 , F (7 , 63) 0 . 05 = 2 . 17 , F (7 , 91) 0 . 05 = 2 . 11 .

For all groups, the null hypothesis was rejected and Nemenyi test

was performed. In what follows, we provide an analysis of each

group, elaborating on the findings of the post-hoc and explaning

some trends and hypothesis that were consistent with the experi-

mental data. 

4.2.1. Group 1: continuous datasets 

The results are in agreement with the overall results presented

in Table 2 , with MDE and SIMDIST assuming the leading positions

(2.78 and 2.81) and HEOM and HVDM falling just behind (3.30

and 3.31). All distances were significantly better than the Baseline,

except HEOM-REDEF, although closer to the critical value, with a

difference of 1.61 ( CD n = 1 . 73 ). Additionally, HEOM-REDEF, HVDM-

REDEF and HVDM-SPECIAL proved to be significantly worse that

the remaining distances. 

Since these datasets comprise only continuous features, these

distances can only differ on the way that continuous features are

normalised and how missing values are treated. As discussed in

Section 3 , HEOM, SIMDIST and MDE perform min-max normali-

sation. HVDM scales features by 4 σx j and SIMDIST further uses a

z normalisation function, yet overall the normalisation process is

similar and therefore does not seem to be the reason behind the

differences in performance. However, whereas HEOM and HVDM

assume a distance of 1 if x Aj and/or x Bj are missing, SIMDIST and

MDE apply more sensitive approaches: SIMDIST replaces the miss-

ing values by the mean similarity between all patterns according to
 and MDE is more refined, further distinguishing situations where

ne value or both values are missing. Since two groups of simi-

ar ranks are identified among these top methods, {HEOM, HVDM}

nd {SIMDIST, MDE}, we hypothesise that the approach to handle

issing values may be on the origin of differences found among

hese methods. 

Also, if our hypothesis is true, it would explain why HEOM-

EDEF and HVDM-REDEF are ranked lower than the remaining

ethods: although they treat missing values as “special values”,

he distance between two patterns on j is 1 if only x Aj or x Bj 

re missing, yet 0 if they are both missing (the same is valid

or HVDM-SPECIAL, since for continuous datasets, is the same

s HVDM-REDEF). This evaluation of distances between patterns

ith missing values seems extreme when compared to the top-

erforming distances (MDE and SIMDIST) and also HEOM and

VDM, which would explain their poor results. 

.2.2. Group 2: nominal datasets 

When datasets are predominantly composed of nominal fea-

ures, HVDM-SPECIAL stood out among all distances, obtaining a

ank of 2.00. The post-hoc revealed that all distances were sig-

ificantly better than the Baseline, except for HEOM-REDEF and

VDM-REDEF ( CD n = 3 . 32 ). Whereas overall HVDM-SPECIAL falls

o the bottom positions ( Table 2 ), for nominal datasets it seems

o be the most beneficial ( Table 4 ). 

Nemenyi test also revealed that HVDM-SPECIAL was signifi-

antly better than HEOM-REDEF and HVDM-REDEF was near the

ritical value, with a difference between ranks of 3.4 and 3.2 re-

pectively. No significant differences were found for HEOM, HVDM,

DE or SIMDIST, despite the considerable differences between

anks of HVDM-SPECIAL and each of the methods (1.5, 1.95, 2.3

nd 1.75, respectively). 

We hypothesise that the great advantage of HVDM-SPECIAL de-

ives from the way it considers a missing value as an extra cate-

ory and instead of simply applying a matching rule (as HVDM-

EDEF), it applies d vdm 

: when only x Aj or x Bj are missing, the dis-

ance computation is more refined, rather than being maximum

assigned a value of 1). 

Another observation is that HEOM-REDEF and HVDM-REDEF are

gain ranked lower than HEOM and HVDM which, similarly to the

revious group, indicates that differences rely on the treatment of

issing values. In this case, assigning a a distance of 0 (minimum

istance) between two missing values seems more prejudicial than

ssigning a distance of 1 (maximum distance). Nevertheless, the

op-performing distance (HVDM-SPECIAL) also considers that the

istance should be 0 between two missing values, although it uses

 more refined approach ( d vdm 

) when only x Aj or x Bj are missing.

his is consistent with the hypothesis that our proposed strategy of

onsidering missing values as extra categories is a major advantage

or nominal datasets. 

In turn, MDE (which also considers a different distance assign-

ent whether both values are missing or only one is missing) is



M.S. Santos, P.H. Abreu and S. Wilk et al. / Pattern Recognition Letters 136 (2020) 111–119 117 

Table 4 

Distance ranks for a 30% missing rate, divided by group. 

Group 1: Continuous Datasets C/N B HEOM HEOM-R HVDM HVDM-R ∗HVDM-S MDE SIMDIST 

bc-coimbra (9/0) 8 3 1 6 4.5 4.5 2 7 

biomed (5/0) 8 3 7 1 5.5 5.5 4 2 

breast-tissue-2c (9/0) 8 2 7 3 5.5 5.5 4 1 

cleveland_0_vs_4 (13/0) 7 3 4 8 5.5 5.5 2 1 

ctg-2c (21/0) 8 4 7 3 5.5 5.5 2 1 

dermatology_6 (34/0) 8 4 7 3 5.5 5.5 2 1 

ecoli (7/0) 8 4 7 2 5.5 5.5 1 3 

ecoli1 (7/0) 8 2 5 3 6.5 6.5 1 4 

ecoli2 (7/0) 8 4 7 1 5.5 5.5 2 3 

ecoli4 (7/0) 2.5 7 2.5 8 5.5 5.5 1 4 

ecoli_0_1_4_6_vs_5 (6/0) 8 3 7 2 5.5 5.5 4 1 

ecoli_0_1_4_7_vs_2_3_5_6 (7/0) 8 1 5 3 6.5 6.5 2 4 

ecoli_0_1_4_7_vs_5_6 (6/0) 8 2 5 3 6.5 6.5 1 4.5 

ecoli_0_1_vs_2_3_5 (7/0) 8 4 5 3 6.5 6.5 2 1 

ecoli_0_1_vs_5 (6/0) 8 3 5 2 6.5 6.5 4 1 

ecoli_0_2_3_4_vs_5 (7/0) 8 2 7 3 5.5 5.5 4 1 

ecoli_0_2_6_7_vs_3_5 (7/0) 6 8 7 2 4.5 4.5 1 3 

ecoli_0_3_4_6_vs_5 (7/0) 8 2 5 4 6.5 6.5 3 1 

ecoli_0_3_4_7_vs_5_6 (7/0) 8 3 7 2 4.5 4.5 1 6 

ecoli_0_3_4_vs_5 (7/0) 8 2 5 3 6.5 6.5 4 1 

ecoli_0_4_6_vs_5 (6/0) 8 3 7 2 5.5 5.5 4 1 

ecoli_0_6_7_vs_3_5 (7/0) 2.5 8 4 2.5 6.5 6.5 1 5 

ecoli_0_6_7_vs_5 (6/0) 2 4 5 8 6.5 6.5 1 3 

ecoli_0_vs_1 (7/0) 8 1 7 2 5.5 5.5 4 3 

haberman (3/0) 8 4 7 1 5.5 5.5 3 2 

new-thyroid-N-vs-HH (5/0) 8 1 6 3 4.5 4.5 7 2 

newthyroid-v1 (5/0) 8 1 7 3 5.5 5.5 4 2 

newthyroid-v3 (5/0) 8 3 6 1 3 3 7 5 

parkinson (22/0) 8 4 7 3 5.5 5.5 2 1 

pima (8/0) 8 3 5 2 6.5 6.5 1 4 

relax (12/0) 8 6 1 7 3.5 3.5 5 2 

spectf (44/0) 8 2 6 7 4 4 1 4 

thyroid_3_vs_2 (21/0) 1 3 6 4 6 6 2 8 

transfusion (4/0) 8 7 4 6 2.5 2.5 1 5 

vertebral-2c (6/0) 8 1 7 2 4.5 4.5 6 3 

wisconsin (9/0) 8 1 5 2 6.5 6.5 4 3 

wpbc (32/0) 8 4 7 2 5.5 5.5 3 1 

Rank: 7.27 3.30 5.66 3.31 5.43 5.43 2.78 2.81 

Group 2: Categorical Datasets C/N B HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST 

acute-inflammations-nephritis (1/5) 8 5 6 1.5 7 4 3 1.5 

acute-inflammations-urinary (1/5) 8 3 4 2 7 5 6 1 

autism-adolescent (1/18) 8 3 5 2 7 1 4 6 

autism-adult (1/15) 8 4 6 5 7 2 3 1 

dermatology-v2 (1/33) 8 4 6 5 1 2 3 7 

fertility-diagnosis (2/7) 8 3 6 2 5 1 7 4 

lung-cancer-v1 (0/56) 8 4 7 5 2 1 6 3 

lymphography-v1 (3/15) 8 3 5 6 7 2 1 4 

thoracic (3/13) 8 3 5 6 7 1 2 4 

postoperative-SvsA (1/7) 7 3 4 5 2 1 8 6 

Rank: 7.90 3.50 5.40 3.95 5.20 2.00 4.30 3.75 

Group 3: Other Datasets C/N B HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST 

abalone (7/2) 8 2 7 3 4 5 6 1 

alzheimer-v1 (7/2) 8 5 3 2 7 6 4 1 

arrhythmia (205/61) 8 7 6 2 4 5 1 3 

bupa (5/1) 8 6 4 3 5 2 1 7 

cryotherapy (4/2) 8 6 7 5 2 4 1 3 

diabetic-retinopathy (16/3) 8 5 7 2 4 6 3 1 

heart-statlog (7/6) 8 6 5 2 7 4 3 1 

immunotherapy (5/2) 2 4 5 6 8 7 1 3 

kala-azar (5/1) 8 5 2 3 1 7 4 6 

kidney (11/13) 8 6 3 2 4 5 7 1 

language-impairment-ENNI (59/2) 4 7 8 6 5 3 1 2 

language-impairment-conti (59/1) 3 4 8 7 5 2 1 6 

language-impairment-gillam (59/2) 7 6 8 4 5 3 1 2 

saheart (8/1) 8 5 7 4 2 3 1 6 

Rank: 6.86 5.29 5.71 3.64 4.50 4.43 2.50 3.07 

C/N: Number of Continuous/Nominal features. 

B : BASELINE; HEOM-R : HEOM-REDEF; HVDM-R : HVDM-REDEF; HVDM-S : HVDM-SPECIAL. 
∗For continuous datasets, HVDM-S is equivalent to HVDM-R. 
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ranked lower than HEOM and HVDM. Further investigation on this

effect is required, although we argue that computing the mean dis-

tance between patterns ( Eqs. (15) and (16) ) might not be adequate

for nominal features (as it seems to be for continuous). 

4.2.3. Group 3: other datasets 

Only HVDM, MDE and SIMDIST proved to be significantly bet-

ter than the Baseline ( CD n = 2 . 91 ). MDE stood out as the winning

approach, followed by SIMDIST, whereas HEOM and HEOM-REDEF

were at the bottom positions. The Nemenyi test also revealed that

MDE proved to be significantly better than HEOM-REDEF (with a

difference between ranks of 3.21) and HEOM was near the criti-

cal value (2.79). This is an interesting observation since, as stated

in the Introduction, HEOM is traditionally used for handling het-

erogeneous data with missing values, although for this group of

datasets it was frequently assigned the worst ranks. 

Given the MCAR generation, there are no constraints on which

type of features missing values were inserted, which is a ques-

tion to be investigated on ongoing work. For instance, it was ex-

pected that MDE performed worse for datasets comprising nominal

features, but the number of nominal features comprised in these

datasets (plus the randomisation process associated with MCAR)

does not allow a full characterisation of such effect. For kidney

dataset, which contains an even distribution of continuous/nominal

features (11/13), MDE ranks the lowest (7.00). However, arrhyth-

mia includes a considerable number of both (205/61) and MDE

achieves the best rank (1.00). In this case, the superiority of MDE

may be explained by the fact that the continuous features consti-

tute the vast majority, although this question should be further ad-

dressed in future work. 

5. Conclusions and future work 

We perform a comparison of several heterogeneous distances

that handle missing values across a benchmark of 61 publicly-

available datasets with different characteristics. From the results

obtained with the experimental data, four main conclusions may

be derived: 

• Distance metrics significantly affect KNN imputation, espe-

cially for higher missing rates (20% and 30%). HEOM-REDEF

and HVDM-REDEF performed the worst, occasionally achieving

lower performance than classifying data with missing values; 
• Differences in performance between distance functions mostly

rely on their respective approaches to missing values. Over-

all, the distance assignment of 0 when two values are missing

seems rigid and may be prejudicial for imputation; 
• There seems to be an advantage in distinguish situations where

only one value is missing from situations when both are miss-

ing. However, depending on the type of feature, these situations

should be subjected to different approaches: e.g., considering

the mean similarity of values for continuous features (similarly

to MDE) and considering the missing value as an extra category

for nominal features (similarly to HVDM-SPECIAL); 
• Finally, although further investigation is required, we also argue

that HEOM, widely used across several domains, may not be

the go-to approach, as others have shown to be more beneficial

(MDE and SIMDIST). 

Regarding future work, there are three main ongoing directions:

• Collect more datasets to further investigate the trends found

within this work; 
• Focus on which features the missing values will be placed (con-

tinuous or nominal) for heterogeneous datasets, to perform a

more thorough analysis; 
• Investigate other values of k and determine whether strategies

of weighting features differently (based on their mutual infor-

mation or discriminative power) would be useful to improve

the imputation results. 
• Explore KNN sensitivity to both the chosen distance function

and features considered for distance computation, either cho-

sen randomly or according to their relevance to classification. A

precursor work on the latter topic may be found in [21] . 
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